Hoare Calculus and Predicate Transformers

Wolfgang Schreiner

Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http:/ /www.risc.uni-linz.ac.at

A,
N

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 1/41

7\

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/41

7\
The Hoare Calculus \q

Calculus for reasoning about imperative programs.
“Hoare triple”: {P} ¢ {Q}
Logical propositions P and Q, program command c.
The Hoare triple is itself a logical proposition.
The Hoare calculus gives rules for constructing true Hoare triples.
Partial correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which Q holds unless it aborts or runs forever.”
Program does not produce wrong result.
But program also need not produce any result.
Abortion and non-termination are not ruled out.
Total correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which Q holds.

Program produces the correct result.

We will use the partial correctness interpretation for the moment.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/41

7\

General Rules .E {.
P20Q P=P {P}c{Q} @=0Q
PHe [P} c {Q}
Logical derivation: %

Forward: If we have shown A; and A,, then we have also shown B.
Backward: To show B, it suffices to show A; and A,.
Interpretation of above sentences:

To show that, if P holds in a state, then @ holds in the same state
(no command is executed), it suffices to show P implies Q.

Hoare triples are ultimately reduced to classical logic.

To show that, if P holds, then Q holds after executing c, it suffices to
show this for a P’ weaker than P and a Q' stronger than Q.

Precondition may be weakened, postcondition may be strengthened.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/41

. 7\
Special Commands M

Commands modeling “emptiness” and abortion.

{P} skip {P} {true} abort {false}

The skip command does not change the state; if P holds before its
execution, then P thus holds afterwards as well.

The abort command aborts execution and thus trivially satisfies
partial correctness.

Axiom implies {P} abort {Q} for arbitrary P, Q.

Useful commands for reasoning and program transformations.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 5/41

Scalar Assignments g F

{Qle/x]} x:=e{Q}

Syntax
Variable x, expression e.
Q[e/x] ... Q where every free occurrence of x is replaced by e.

Interpretation

To make sure that @ holds for x after the assignment of e to x, it
suffices to make sure that Q holds for e before the assignment.

Partial correctness
Evaluation of e may abort.

{x+3<5} x:=x+43 {x<5}
{x<2} x:=x+4+3 {x<5}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/41

: 7\
Array Assignments N

{Q[ali — el/al} ali] :== e {Q}

An array is modelled as a functiona:/ — V

Index set /, value set V.
a[i] = e ...a holds at index i the value e.

Updated array a[i — €]

Array that is constructed from a by mapping index i to value e.

Axioms (foralla: 1 —» V,iel jel,ee V):
i=j=ali—elljl=e
i #7 = ali > ellj] = alj
{a[i s x][1] > 0} a[i] :
afi] :

x {a[l] >0}
{(i=1=x>0)A(i#1= a[1] >0)} x

{al1] > 0}

Index violations and pointer semantics of arrays not yet considered.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

7/41

7\
Command Sequences %

{P} a {Ri} Ri= R {R} 2 {Q}
{P} c1i; 0 {Q}

Interpretation

To show that, if P holds before the execution of ¢;; ¢, then @ holds
afterwards, it suffices to show for some R; and R» with R; = R» that

if P holds before cj, that Ry holds afterwards, and that
if Ry holds before ¢, then @ holds afterwards.

Problem: find suitable R; and R,
Easy in many cases (see later).

{x+y=1>0}y:=y—1{x+y >0} {x+y >0} x:=x+y {x>0}
{xX+y-1>0}ty:=y—-1ix:=x+y {x>0}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 8/41

Conditionals g F

{PAb} 1 {Q} {PA-b}c {Q}
{PYif b then c; else ¢, {Q}

{PAb} c{Q} (PA-b)=Q
{P} if b then ¢ {Q}

Interpretation
To show that, if P holds before the execution of the conditional, then
Q@ holds afterwards,
it suffices to show that the same is true for each conditional branch,
under the additional assumption that this branch is executed.

{x#0Ax>0}y:=x{y >0} {x#0Ax 20} y:=—-x{y >0}
{x#0}if x>0 then y :=xelse y := —x {y > 0}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/41

7\

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/41

_ o,
Backward Reasoning & {

Implication of rule for command sequences and rule for assignments:

{P} c {Q[e/x]}
{P} ¢;x:=e {Q}

Interpretation
If the last command of a sequence is an assignment, we can remove
the assignment from the proof obligation.
By multiple application, assignment sequences can be removed from
the back to the front.

{P} {P} {P} {P} P=>x=4
x 1= x+1; x 1= x+1; x 1= x+1; {x+1=5}

y 1= 2%x; y = 2%x; {x+2x=15} (& x=4)

z 1= x+ty {x+y=15} (& 3x=15)

{z =15} (& x=5)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 11/41

.. 7\
Weakest Preconditions \q

A calculus for "backward reasoning”.

Predicate transformer wp
Function “wp” that takes a command ¢ and a postcondition @ and
returns a precondition.
Read wp(c, Q) as “the weakest precondition of c w.rt. @".
wp(c, Q) is a precondition for ¢ that ensures @ as a postcondition.
Must satisfy {wp(c, Q)} ¢ {@Q}.
wp(c, Q) is the weakest such precondition.
Take any P such that {P} ¢ {Q}.
Then P = wp(P, Q).
Consequence: {P} ¢ {Q} iff (P = wp(c, Q))
We want to prove {P} ¢ {Q}.
We may prove P = wp(c, Q) instead.

Verification is reduced to the calculation of weakest preconditions.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 12/41

.. 7\
Weakest Preconditions \q

The weakest precondition of each program construct.

wp(skip, Q) & Q

wp(abort, Q) & true

wp(x := e, Q) & Q[e/x]

wp(ci; €2, Q) & wp(c1, wp(ez, Q))

wp(if b then ¢ else ¢, Q) & (b = wp(ci, Q)) A (—b = wp(c2, Q))
wp(if b then ¢, Q) & (b= wp(c, Q)) A(—-b= Q)

Alternative formulation of a program calculus.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/41

_ o/
Forward Reasoning .§ {.

Sometimes, we want to derive a postcondition from a given precondition.
{P} x:=e {3xo : P[xo/x] A x = e[xo/x]}

Forward Reasoning
What is the maximum we know about the post-state of an
assignment x := e, if the pre-state satisfies P?
We know that P holds for some value xq (the value of x in the
pre-state) and that x equals e[xg/x].

{x>0Ay=2a}
x:=x+1
{3x:x%>0Ay=aAx=xg+1}
(@ :x>0Ax=x+1)Ay=a)
(&x>0Ay=a)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/41

.. 7\
Strongest Postcondition %

A calculus for forward reasoning.

Predicate transformer sp
Function “sp” that takes a precondition P and a command ¢ and
returns a postcondition.
Read sp(P, c) as “the strongest postcondition of ¢ w.r.t. P".
sp(P, ¢) is a postcondition for ¢ that is ensured by precondition P.
Must satisfy {P} ¢ {sp(P, c)}.
sp(P, c) is the strongest such postcondition.
Take any P, Q such that {P} ¢ {Q}.
Then sp(P,c) = Q.
Consequence: {P} ¢ {Q} iff (sp(P,c) = Q).
We want to prove {P} ¢ {Q}.
We may prove sp(P, c) = @ instead.

Verification is reduced to the calculation of strongest postconditions.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 15/41

. 7\
Strongest Postconditions N

The strongest postcondition of each program construct.

sp(P, skip) & P

sp(P, abort) < false

sp(P,x :=€) < Ixo : P[xo/x] A x = e[x0/x]

sp(P, c1; &) < sp(sp(P, c1), c2)

sp(P,if b then ¢, else ¢;) < sp(P A b, c1) Vsp(P A—b,c)
sp(P, if b then c¢) < sp(P A b, c)V(P/\—|b)

The use of predicate transformers is an alternative/supplement to the
Hoare calculus; this view is due to Dijkstra.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 16/41

7\

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 17/41

M.E.
The Hoare Calculus and Loops N

P=1 {INb}c{l} (IN-b)=Q
{P} while b do ¢ {Q}

{true} loop {false}

Interpretation:
The loop command does not terminate and thus trivially satisfies
partial correctness.
Axiom implies {P} loop {Q} for arbitrary P, Q.
To show that, if before the execution of a while-loop the property P
holds, after its termination the property @ holds, it suffices to show
for some property / (the loop invariant) that
I holds before the loop is executed (i.e. that P implies /),
if I holds when the loop body is entered (i.e. if also b holds), that
after the execution of the loop body / still holds,
when the loop terminates (i.e. if b does not hold), / implies Q.
Problem: find appropriate loop invariant /.
Strongest relationship between all variables modified in loop body.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 18/41

Z8N
Example '& {'

I s=Y1jA(n>0=1<i<nt+1)A(n<0=>i=1)

(i=1As=0)=1
{INi<n}s:=s+iji:=i+1{l}
(INign=s=3"1]
{i=1As=0}whilei<ndo (s:=s+ii:=i+1) {s:zj'-’:lj}

The invariant captures the “essence” of a loop; only by giving its
invariant, a true understanding of a loop is demonstrated.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 19/41

7\
Practical Aspects Ny

We want to verify the following program:
{P} c1; while b do ¢; cx {Q}

Assume ¢; and ¢, do not contain loop commands.

It suffices to prove
{sp(P, c1)} while b do ¢ {wp(c,, Q)}

Verification of loops is the core of most program verifications.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 20/41

7\
Weakest Liberal Preconditions for Loops .E {'

wp(loop, Q) < true
wp(while b do ¢, Q) & Vi e N: L;(Q)

Lo(Q) :& true
L,‘+1(Q) = (_'b = Q) A (b = wp(c, LI(Q)))

Interpretation
Weakest precondition that ensures that loops stops in a state
satisfying @, unless it aborts or runs forever.
Infinite sequence of predicates L;(Q):
Weakest precondition that ensures that after less than i iterations the
state satisfies @, unless the loop aborts or does not yet terminate.
Alternative view: L;(Q) < wp(if;, Q)
ifo := loop
ifi 1 := if b then (c;if;)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 21/41

7\
Example N

wp(while i <ndoi:=i+1,Q)

Lo(Q) & true

LQ e (igdn=Q A(i<n=>wp(i:=i+1,true))
S (£ n= Q)A(i <n= true)
& (ign=Q)
LQOQe(ign=>QQAN(i<n=>wp(i:=i+1l,itn=> Q)
& (ign=Q)A

(i<n=>((+1£n=Q[i+1/1]))
LA (ign=>QA(i<n=>wp(i:=i+1,
(ign=>QA(i<n=(i+1&n= Q[i+1/i])))
S(ign=Q)A
(i<n=>((i+1¢£n=>Q[i+1/i)A
(i+l1<n=(i+2¢n=Q[i+2/i])))

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

22/41

7\

N’

Weakest Liberal Preconditions for Loops

Sequence L;(Q) is monotonically increasing in strength:
VieN: Li1(Q) = L(Q).

The weakest precondition is the “lowest upper bound”:
Vi € N : wp(while b do ¢, Q) = Li(Q).
VP:(Vie N: P= Li(Q)) = (P = wp(while b do c, Q)).

We can only compute weaker approximation L;(Q).
wp(while b do ¢, Q) = L;(Q).

We want to prove {P} while b do ¢ {Q}.
This is equivalent to proving P = wp(while b do ¢, Q).
Thus P = L;(Q) must hold as well.

If we can prove =(P = Li(Q)), ...

{P} while b do ¢ {Q} does not hold.
If we fail, we may try the easier proof =(P = L;11(Q)).

Falsification is possible by use of approximation L;, but verification is not.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 23/41

7\

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 24/41

7\
Total Correctness of Loops N\

Hoare rules for loop and while are replaced as follows:

P=1IAb=t>0
{false} loop {false} {InbAt=N}c{IANt <N} (IA-b)=Q
{P} while b do ¢ {Q}

New interpretation of {P} ¢ {Q}.
If execution of ¢ starts in a state where P holds, then execution
terminates in a state where Q holds, unless it aborts.
Non-termination is ruled out, abortion not (yet).
The loop command thus does not satisfy total correctness.
Termination term t.
Denotes a natural number before and after every loop iteration.
If t = N before an iteration, then t < N after the iteration.
Consequently, if term denotes zero, loop must terminate.

Instead of the natural numbers, any well-founded ordering may be used

for the domain of t.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 25/41

Z8N
Example .E.{.

I s=Y1jA(n>0=1<i<nt+1)A(n<0=>i=1)

(i=1As=0)=1 INi<n=>n—i+1>0
{INi<O0An—i+1=N}s:=s+ii:=i+1{IAn—i+1<N}
(INign=s=3"1]

{i=1As=0}whilei<ndo (s:=s+ii:=i+1) {s:Z}’le}

In practice, termination is easy to show (compared to partial correctness).

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 26/41

N 7\
Weakest Preconditions for Loops '& {'

wp(loop, Q) & false
wp(while bdo ¢, Q) & Ji € N: L;(Q)

Lo(Q) :¢ false
Liy1(Q) :& (=b = Q) A (b = wp(c, Li(Q)))

New interpretation
Weakest precondition that ensures that the loop terminates in a state
in which Q holds, unless it aborts.
New interpretation of L;(Q)
Weakest precondition that ensures that the loop terminates after less
than i iterations in a state in which Q holds, unless it aborts.
Preserves property: {P} ¢ {Q} iff (P = wp(c, Q))
Now for total correctness interpretation of Hoare calculus.
Preserves alternative view: L;(Q) < wp(if;, Q)
ifo := loop
ifiy1 := if b then (c;if;)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 27/41

7\
Example %Qlf

wp(while i <ndoi:=i+1,Q)

Lo(Q) :& false
L(Q) e (i £ n= QAG <n= wpli:=i+1,Lo(Q)))
&S (i€n=>Q)A(i <n= false)
SidnAQ
LQ) e (ign=Q A(i<n=> wp(i:=i+1,L(Q)))
S(igdn=>Q)A
i<n=(i+1&£nAQ[i+1/i]))
L) (ign=>Q)A(<n= wp(i:=i+1,1,(Q)))
sS(ign=>Q)A
(i<n= ((i+1£n=Q[i+1/i])A
(i+l<n=(+2£nAQ[i+2/i])))

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 28/41

. 12
Weakest Preconditions for Loops \q

Sequence L;(Q) is now monotonically decreasing in strength:
VieN: Li(Q) = Li(Q).
The weakest precondition is the “greatest lower bound”:
Vi e N: L;(Q) = wp(while b do ¢, Q).
VP : (Vie N: Li(Q) = P) = (wp(while b do ¢, Q) = P).
We can only compute a stronger approximation L;(Q).
L;(Q) = wp(while b do ¢, Q).
We want to prove {P} ¢ {Q}.
It suffices to prove P = wp(while b do c, Q).

It thus also suffices to prove P = L;(Q).
If proof fails, we may try the easier proof P = L;1(Q)

Verifications are typically not successful with finite approximation of
weakest precondition.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 29/41

7\

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 30/41

: 7\
Abortion .E {'

New rules to prevent abortion.

{false} abort {true}
{Q[e/x] A D(e)} x == e {Q}
{Ql[a[i — e]/a] AD(e) N0 < i < length(a)} a[i] = e {Q}

New interpretation of {P} ¢ {Q}.
If execution of ¢ starts in a state, in which property P holds, then it
does not abort and eventually terminates in a state in which @ holds.

Sources of abortion.

Division by zero.
Index out of bounds exception.

D(e) makes sure that every subexpression of e is well defined.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 31/41

: . 7\
Definedness of Expressions N\

(0) :& true.
(1) :& true.
(x) == true.
(a[i]) :& D(/) A0 < i < length(a).
(e1 + &) :& D(e1) A D(e2).

(e1 % &) 1= D(e1) A D(e2).

(er/e2) & D(e1) A D(e2) A e2 # 0.
(true) :& true.

(false) :& true.

(=b) & D(b).

(b1 A b2) & D(b1) A D(b2).

(b1 V b2) & D(b1) A D(b2)

(a1 < &) :& D(e1) A D(e2).
(a1 < &) & D(e1) A D(e2).

(e1 > @) :& D(e1) A D(e2).
(61 > eg) = D(el) A D(EQ).

DDDDDDDDDDDDDDD

Assumes that expressions have already been type-checked.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 32/41

: 7\
Abortion .E W

Slight modification of existing rules.

{PAbAD(b)} a {Q} {PA-bAD(b)} & {Q}
{P} if b then ¢ else ¢; {Q}

{PAbAD(b)} c{Q} (PA-bAD(b)) = Q
{P} if b then ¢ {Q}

P=1 1= (T e NAD(b))
{INBAT =t} c{INT <t} (IN-b)=Q
{P} while b do ¢ {Q}

Expressions must be defined in any context.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 33/41

: 7\
Abortion .E W

Similar modifications of weakest preconditions.

wp(abort, Q) < false
wp(x = ¢, Q) & Qle/x] A D(e)
wp(if b then ¢; else ¢;, Q) &
D(b) A (b= wp(c1, Q)) A (—b = wp(cz, Q))
wp(if b then ¢, Q) & D(b) A (b= wp(c,Q)) A (b= Q)
wp(while bdo ¢, Q) & 3i € N: L;(Q)

Lo(Q) & false
Liy1(Q) :& D(b) A (b= Q) A (b = wp(c, Li(Q)))

wp(c, Q) now makes sure that the execution of ¢ does not abort but
eventually terminates in a state in which @ holds.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 34/41

7\

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 35/41

-ge L] ME
Procedure Specifications W

global F;
requires Pre;
ensures Post;

o=p(i){c}

Specification of procedure o = p(i).
Input parameter i, output parameter o.
A call has form y = p(e) for expression e and variable y.
Set of global variables (“frame") F.

Those global variables that p may read/write (in addition to i, 0).
Let f denote all variables in F.

Precondition Pre (may refer to i, f).
Postcondition Post (may refer to i, f, fy, 0).

Proof obligation
{PreNip=iNfy="r} c {Postlig/i]}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 36/41

Y
Procedure Calls .E {'

First let us give an alternative (equivalent) version of the assignment rule.

Original:
{D(e) A Qle/x]}
X =€
{Q}
Alternative:
{D(e) AVX' : x' = e = Q[x'/x]}
X =€
{@}

The new value of x is given name x’ in the precondition.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 37/41

Y
Procedure Calls .E {'

From this, we can derive a rule for the correctness of procedure calls.

{D(e) A Pre[e/i] A
Vy' f': Post[e/i,y' /o, r;/fb,)f'/f] = Qly'/y,f'/f1}
ple,y

{Q}

Pre[e/i] refers to the values of the actual argument e (rather than
to the formal parameter i).

y' and f’ denote the values of the vars y, and f after the call.
Post([. . .] refers to the argument values before and after the call.
Qly'/y, f'/f] refers to the argument values after the call.

Modular reasoning: rule only relies on the specification of p, not on its
implementation.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 38/41

7\
Corresponding Predicate Transformers N

wp(y = p(e), Q) &
D(e) A Pre[e/i]l A
vy, f'
Postle/i,y'[o,f[fo,f'/f] = Qly'/y, f'/f]

sp(P,y = p(e)) <

yo, fo :
Plyo/y, fo/f] A Postlelyo/y, fo/f1/i,y /0]

Explicit naming of old/new values required.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 39/41

Z,
Procedure Calls Example Ny

Procedure specification:
global f
requires f > 0Ai >0
ensures fo =f-i+oAN0<o0o<i
o = dividesF (i)
Procedure call:
{f>0ANf=NAb>0}
y = dividesF(b+ 1)
{f-(b+1)<N<(fF+1)-(b+1)}
To be ultimately proved:
F>0NF=NAb>0=
D(b+1)Af>0Ab+1>0A
vy’ f:
f=Ff -(b+1)+y A0Ly <b+1=>
Flo(b+1)<N<(f+1)-(b+1)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 40/41

7\
Not Yet Covered .E{

Primitive data types.
int values are actually finite precision integers.
More data and control structures.

switch, do-while (easy); continue, break, return (more complicated).
Records can be handled similar to arrays.

Recursion.

Procedures may not terminate due to recursive calls.
Exceptions and Exception Handling.

Short discussion in the context of ESC/Java2 later.

Pointers and Objects.
Here reasoning gets complicated.

The more features are covered, the more complicated reasoning becomes.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 41/41

	The Hoare Calculus for Non-Loop Programs
	Predicate Transformers
	Partial Correctness of Loop Programs
	Total Correctness of Loop Programs
	Abortion
	Procedures

