Hoare Calculus and Predicate Transformers

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

1. The Hoare Calculus for Non-Loop Programs

- 2. Predicate Transformers
- 3. Partial Correctness of Loop Programs
- 4. Total Correctness of Loop Programs
- 5. Abortion
- 6. Procedures

The Hoare Calculus

Calculus for reasoning about imperative programs.

- "Hoare triple": $\{P\}$ c $\{Q\}$
 - Logical propositions P and Q, program command c.
 - The Hoare triple is itself a logical proposition.
 - The Hoare calculus gives rules for constructing true Hoare triples.
- Partial correctness interpretation of $\{P\}$ c $\{Q\}$:

"If c is executed in a state in which P holds, then it terminates in a state in which Q holds unless it aborts or runs forever."

- Program does not produce wrong result.
- But program also need not produce any result.
 - Abortion and non-termination are not ruled out.
- Total correctness interpretation of $\{P\}$ c $\{Q\}$:

"If c is executed in a state in which P holds, then it terminates in a state in which Q holds.

Program produces the correct result.

We will use the partial correctness interpretation for the moment.

General Rules

$$\frac{P \Rightarrow Q}{\{P\} \{Q\}} \qquad \frac{P \Rightarrow P' \ \{P'\} \ c \ \{Q'\} \quad Q' \Rightarrow Q}{\{P\} \ c \ \{Q\}}$$

- Logical derivation: $\frac{A_1 A_2}{R}$
 - Forward: If we have shown A_1 and A_2 , then we have also shown B.
 - Backward: To show B_1 , it suffices to show A_1 and A_2 .
- Interpretation of above sentences:
 - To show that, if P holds in a state, then Q holds in the same state (no command is executed), it suffices to show P implies Q.
 - Hoare triples are ultimately reduced to classical logic.
 - \blacksquare To show that, if P holds, then Q holds after executing c, it suffices to show this for a P' weaker than P and a Q' stronger than Q.
 - Precondition may be weakened, postcondition may be strengthened.

Special Commands

Commands modeling "emptiness" and abortion.

$$\{P\}$$
 skip $\{P\}$ $\{\text{true}\}$ abort $\{\text{false}\}$

- The **skip** command does not change the state; if *P* holds before its execution, then *P* thus holds afterwards as well.
- The abort command aborts execution and thus trivially satisfies partial correctness.
 - Axiom implies $\{P\}$ abort $\{Q\}$ for arbitrary P, Q.

Useful commands for reasoning and program transformations.

Scalar Assignments

$${Q[e/x]} x := e {Q}$$

Syntax

- Variable x, expression e.
- $Q[e/x] \dots Q$ where every free occurrence of x is replaced by e.

Interpretation

■ To make sure that Q holds for x after the assignment of e to x, it suffices to make sure that Q holds for e before the assignment.

Partial correctness

Evaluation of e may abort.

$${x+3<5}$$
 $x := x+3$ ${x<5}$
 ${x<2}$ $x := x+3$ ${x<5}$

Array Assignments

$$\{Q[a[i \mapsto e]/a]\}\ a[i] := e \{Q\}$$

- \blacksquare An array is modelled as a function $a:I\to V$
 - Index set I, value set V.
 - $a[i] = e \dots a$ holds at index i the value e.
- Updated array $a[i \mapsto e]$
 - Array that is constructed from a by mapping index i to value e.
 - Axioms (for all $a: I \rightarrow V, i \in I, j \in I, e \in V$):

$$i = j \Rightarrow a[i \mapsto e][j] = e$$

 $i \neq j \Rightarrow a[i \mapsto e][j] = a[j]$

Index violations and pointer semantics of arrays not yet considered.

Command Sequences

$$\frac{\{P\}\ c_1\ \{R_1\}\ R_1 \Rightarrow R_2\ \{R_2\}\ c_2\ \{Q\}}{\{P\}\ c_1; c_2\ \{Q\}}$$

- Interpretation
 - To show that, if P holds before the execution of c_1 ; c_2 , then Q holds afterwards, it suffices to show for some R_1 and R_2 with $R_1 \Rightarrow R_2$ that
 - \blacksquare if P holds before c_1 , that R_1 holds afterwards, and that
 - \blacksquare if R_2 holds before c_2 , then Q holds afterwards.
- Problem: find suitable R_1 and R_2
 - Easy in many cases (see later).

$$\frac{\{x+y-1>0\}\ y:=y-1\ \{x+y>0\}\ \{x+y>0\}\ x:=x+y\ \{x>0\}}{\{x+y-1>0\}\ y:=y-1; x:=x+y\ \{x>0\}}$$

Conditionals

9/41

$$\frac{\{P \land b\} \ c_1 \ \{Q\} \ \{P \land \neg b\} \ c_2 \ \{Q\}}{\{P\} \ \text{if } b \ \text{then} \ c_1 \ \text{else} \ c_2 \ \{Q\}}$$
$$\frac{\{P \land b\} \ c \ \{Q\} \ (P \land \neg b) \Rightarrow Q}{\{P\} \ \text{if } b \ \text{then} \ c \ \{Q\}}$$

Interpretation

- To show that, if P holds before the execution of the conditional, then
 Q holds afterwards,
- it suffices to show that the same is true for each conditional branch, under the additional assumption that this branch is executed.

$$\frac{\{x \neq 0 \land x \geq 0\} \ y := x \ \{y > 0\} \ \ \{x \neq 0 \land x \not\geq 0\} \ y := -x \ \{y > 0\}}{\{x \neq 0\} \ \text{if} \ x \geq 0 \ \text{then} \ y := x \ \text{else} \ y := -x \ \{y > 0\}}$$

- 1. The Hoare Calculus for Non-Loop Programs
- 2. Predicate Transformers
- 3. Partial Correctness of Loop Programs
- 4. Total Correctness of Loop Programs
- 5. Abortion
- 6. Procedures

Backward Reasoning

Implication of rule for command sequences and rule for assignments:

$$\frac{\{P\} \ c \ \{Q[e/x]\}}{\{P\} \ c; x := e \ \{Q\}}$$

Interpretation

- If the last command of a sequence is an assignment, we can remove the assignment from the proof obligation.
- By multiple application, assignment sequences can be removed from the back to the front.

Weakest Preconditions

A calculus for "backward reasoning".

- Predicate transformer wp
 - Function "wp" that takes a command c and a postcondition Q and returns a precondition.
 - Read wp(c, Q) as "the weakest precondition of c w.r.t. Q".
- = wp(c, Q) is a precondition for c that ensures Q as a postcondition.
 - Must satisfy $\{wp(c, Q)\}\ c\ \{Q\}$.
- wp(c, Q) is the weakest such precondition.
 - Take any P such that $\{P\}$ c $\{Q\}$.
 - Then $P \Rightarrow wp(P, Q)$.
- Consequence: $\{P\}$ c $\{Q\}$ iff $(P \Rightarrow wp(c, Q))$
 - We want to prove $\{P\}$ c $\{Q\}$.
 - We may prove $P \Rightarrow wp(c, Q)$ instead.

Weakest Preconditions

The weakest precondition of each program construct.

```
\begin{array}{l} \mathsf{wp}(\mathsf{skip},Q) \Leftrightarrow Q \\ \mathsf{wp}(\mathsf{abort},Q) \Leftrightarrow \mathsf{true} \\ \mathsf{wp}(x := e,Q) \Leftrightarrow Q[e/x] \\ \mathsf{wp}(c_1;c_2,Q) \Leftrightarrow \mathsf{wp}(c_1,\mathsf{wp}(c_2,Q)) \\ \mathsf{wp}(\mathsf{if}\ b\ \mathsf{then}\ c_1\ \mathsf{else}\ c_2,Q) \Leftrightarrow (b\Rightarrow \mathsf{wp}(c_1,Q)) \land (\neg b\Rightarrow \mathsf{wp}(c_2,Q)) \\ \mathsf{wp}(\mathsf{if}\ b\ \mathsf{then}\ c,Q) \Leftrightarrow (b\Rightarrow \mathsf{wp}(c,Q)) \land (\neg b\Rightarrow Q) \end{array}
```

Alternative formulation of a program calculus.

Forward Reasoning

Sometimes, we want to derive a postcondition from a given precondition.

$$\{P\} \ x := e \ \{\exists x_0 : P[x_0/x] \land x = e[x_0/x]\}$$

■ Forward Reasoning

- What is the maximum we know about the post-state of an assignment x := e, if the pre-state satisfies P?
- We know that P holds for some value x_0 (the value of x in the pre-state) and that x equals $e[x_0/x]$.

$$\{x \ge 0 \land y = a\}$$

$$x := x + 1$$

$$\{\exists x_0 : x_0 \ge 0 \land y = a \land x = x_0 + 1\}$$

$$(\Leftrightarrow (\exists x_0 : x_0 \ge 0 \land x = x_0 + 1) \land y = a)$$

$$(\Leftrightarrow x > 0 \land y = a)$$

Strongest Postcondition

A calculus for forward reasoning.

- Predicate transformer sp
 - Function "sp" that takes a precondition *P* and a command *c* and returns a postcondition.
 - Read sp(P, c) as "the strongest postcondition of c w.r.t. P".
- = sp(P, c) is a postcondition for c that is ensured by precondition P.
 - Must satisfy $\{P\}$ c $\{\operatorname{sp}(P,c)\}$.
- = sp(P, c) is the strongest such postcondition.
 - Take any P, Q such that $\{P\}$ c $\{Q\}$.
 - Then $sp(P, c) \Rightarrow Q$.
- Consequence: $\{P\}$ c $\{Q\}$ iff $(\operatorname{sp}(P,c) \Rightarrow Q)$.
 - We want to prove $\{P\}$ c $\{Q\}$.
 - We may prove $sp(P, c) \Rightarrow Q$ instead.

Verification is reduced to the calculation of strongest postconditions.

Strongest Postconditions

The strongest postcondition of each program construct.

```
\operatorname{sp}(P,\operatorname{\mathbf{skip}})\Leftrightarrow P

\operatorname{sp}(P,\operatorname{\mathbf{abort}})\Leftrightarrow\operatorname{false}

\operatorname{sp}(P,x:=e)\Leftrightarrow \exists x_0:P[x_0/x]\wedge x=e[x_0/x]

\operatorname{sp}(P,c_1;c_2)\Leftrightarrow \operatorname{sp}(\operatorname{sp}(P,c_1),c_2)

\operatorname{sp}(P,\operatorname{\mathbf{if}} b\operatorname{\mathbf{then}} c_1\operatorname{\mathbf{else}} c_2)\Leftrightarrow \operatorname{sp}(P\wedge b,c_1)\vee\operatorname{sp}(P\wedge \neg b,c_2)

\operatorname{sp}(P,\operatorname{\mathbf{if}} b\operatorname{\mathbf{then}} c)\Leftrightarrow \operatorname{sp}(P\wedge b,c)\vee(P\wedge \neg b)
```

The use of predicate transformers is an alternative/supplement to the Hoare calculus; this view is due to Dijkstra.

- 1. The Hoare Calculus for Non-Loop Programs
- 2. Predicate Transformers
- 3. Partial Correctness of Loop Programs
- 4. Total Correctness of Loop Programs
- 5. Abortion
- 6. Procedures

The Hoare Calculus and Loops

Interpretation:

- The loop command does not terminate and thus trivially satisfies partial correctness.
 - Axiom implies $\{P\}$ loop $\{Q\}$ for arbitrary P, Q.
- To show that, if before the execution of a **while**-loop the property *P* holds, after its termination the property *Q* holds, it suffices to show for some property *I* (the loop invariant) that
 - \blacksquare I holds before the loop is executed (i.e. that P implies I),
 - if I holds when the loop body is entered (i.e. if also b holds), that after the execution of the loop body I still holds,
 - when the loop terminates (i.e. if b does not hold), I implies Q.
- Problem: find appropriate loop invariant 1.
 - Strongest relationship between all variables modified in loop body.

Example

$$I :\Leftrightarrow s = \sum_{j=1}^{i-1} j \land (n \ge 0 \Rightarrow 1 \le i \le n+1) \land (n < 0 \Rightarrow i = 1)$$

$$(i = 1 \land s = 0) \Rightarrow I$$

$$\{I \land i \le n\} \ s := s+i; i := i+1 \ \{I\}$$

$$(I \land i \not \le n) \Rightarrow s = \sum_{j=1}^{n} j$$

$$\{i = 1 \land s = 0\} \text{ while } i \le n \text{ do } (s := s+i; i := i+1) \ \{s = \sum_{j=1}^{n} j\}$$

The invariant captures the "essence" of a loop; only by giving its invariant, a true understanding of a loop is demonstrated.

Practical Aspects

We want to verify the following program:

$$\{P\}$$
 c_1 ; while b do c ; c_2 $\{Q\}$

- Assume c_1 and c_2 do not contain loop commands.
- It suffices to prove

$$\{sp(P, c_1)\}\$$
while $b\$ do $c\ \{wp(c_2, Q)\}$

Verification of loops is the core of most program verifications.

Weakest Liberal Preconditions for Loops


```
wp(\mathbf{loop}, Q) \Leftrightarrow true

wp(\mathbf{while} \ b \ \mathbf{do} \ c, Q) \Leftrightarrow \forall i \in \mathbb{N} : L_i(Q)
```

$$L_0(Q) :\Leftrightarrow \text{true}$$

 $L_{i+1}(Q) :\Leftrightarrow (\neg b \Rightarrow Q) \land (b \Rightarrow \text{wp}(c, L_i(Q)))$

Interpretation

- Weakest precondition that ensures that loops stops in a state satisfying Q, unless it aborts or runs forever.
- Infinite sequence of predicates $L_i(Q)$:
 - Weakest precondition that ensures that after less than *i* iterations the state satisfies *Q*, unless the loop aborts or does not yet terminate.
- Alternative view: $L_i(Q) \Leftrightarrow wp(if_i, Q)$ $if_0 := loop$ $if_{i+1} := if_b then_{(c;if_i)}$

Example


```
wp(while i < n do i := i + 1. Q)
L_0(Q) \Leftrightarrow \text{true}
L_1(Q) \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, true))
            \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow \text{true})
            \Leftrightarrow (i \not < n \Rightarrow Q)
L_2(Q) \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, i \not< n \Rightarrow Q))
            \Leftrightarrow (i \not < n \Rightarrow \bigcirc) \land
                          (i < n \Rightarrow (i + 1 \not< n \Rightarrow Q[i + 1/i]))
L_3(Q) \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1,
                          (i \not< n \Rightarrow Q) \land (i < n \Rightarrow (i + 1 \not< n \Rightarrow Q[i + 1/i])))
            \Leftrightarrow (i \nleq n \Rightarrow Q) \land
                          (i < n \Rightarrow ((i+1 \not< n \Rightarrow Q[i+1/i]) \land
                                    (i+1 < n \Rightarrow (i+2 \not< n \Rightarrow Q[i+2/i])))
```

Weakest Liberal Preconditions for Loops

- Sequence $L_i(Q)$ is monotonically increasing in strength:
 - $\forall i \in \mathbb{N} : L_{i+1}(Q) \Rightarrow L_i(Q).$
- The weakest precondition is the "lowest upper bound":
 - $\forall i \in \mathbb{N} : wp(\mathbf{while} \ b \ \mathbf{do} \ c, Q) \Rightarrow L_i(Q).$
 - $\forall P : (\forall i \in \mathbb{N} : P \Rightarrow L_i(Q)) \Rightarrow (P \Rightarrow wp(while \ b \ do \ c, Q)).$
- We can only compute weaker approximation $L_i(Q)$.
 - wp(while b do c, Q) $\Rightarrow L_i(Q)$.
- We want to prove $\{P\}$ while b do c $\{Q\}$.
 - This is equivalent to proving $P \Rightarrow wp(\mathbf{while}\ b\ \mathbf{do}\ c, Q)$.
 - Thus $P \Rightarrow L_i(Q)$ must hold as well.
- If we can prove $\neg(P \Rightarrow L_i(Q)), \ldots$
 - P while b do c Q does not hold.
 - If we fail, we may try the easier proof $\neg (P \Rightarrow L_{i+1}(Q))$.

Falsification is possible by use of approximation L_i , but verification is not.

- 1. The Hoare Calculus for Non-Loop Programs
- 2. Predicate Transformers
- 3. Partial Correctness of Loop Programs
- 4. Total Correctness of Loop Programs
- 5. Abortion
- 6. Procedures

Total Correctness of Loops

Hoare rules for **loop** and **while** are replaced as follows:

- New interpretation of $\{P\}$ c $\{Q\}$.
 - If execution of c starts in a state where P holds, then execution terminates in a state where Q holds, unless it aborts.
 - Non-termination is ruled out, abortion not (yet).
 - The **loop** command thus does not satisfy total correctness.
- Termination term t
 - Denotes a natural number before and after every loop iteration.
 - If t = N before an iteration, then t < N after the iteration.
 - Consequently, if term denotes zero, loop must terminate.

Instead of the natural numbers, any well-founded ordering may be used for the domain of t.

Example

$$I : \Leftrightarrow s = \sum_{j=1}^{i-1} j \land (n \ge 0 \Rightarrow 1 \le i \le n+1) \land (n < 0 \Rightarrow i = 1)$$

$$(i = 1 \land s = 0) \Rightarrow I \quad I \land i \le n \Rightarrow n-i+1 > 0$$

$$\{I \land i \le 0 \land n-i+1 = N\} \ s := s+i; i := i+1 \ \{I \land n-i+1 < N\}$$

$$(I \land i \le n) \Rightarrow s = \sum_{j=1}^{n} j$$

$$\{i = 1 \land s = 0\} \text{ while } i \le n \text{ do } (s := s+i; i := i+1) \ \{s = \sum_{i=1}^{n} j\}$$

In practice, termination is easy to show (compared to partial correctness).

Weakest Preconditions for Loops


```
wp(loop, Q) \Leftrightarrow false
wp(while b do c, Q) \Leftrightarrow \exists i \in \mathbb{N} : L_i(Q)
```

$$L_0(Q) : \Leftrightarrow \mathsf{false}$$

 $L_{i+1}(Q) : \Leftrightarrow (\neg b \Rightarrow Q) \land (b \Rightarrow \mathsf{wp}(c, L_i(Q)))$

- New interpretation
 - Weakest precondition that ensures that the loop terminates in a state in which Q holds, unless it aborts.
- New interpretation of $L_i(Q)$
 - Weakest precondition that ensures that the loop terminates after less than i iterations in a state in which Q holds, unless it aborts.
- Preserves property: $\{P\}$ c $\{Q\}$ iff $(P \Rightarrow wp(c, Q))$
 - Now for total correctness interpretation of Hoare calculus.
- Preserves alternative view: $L_i(Q) \Leftrightarrow wp(if_i, Q)$ if 0 := loopif $i := if b then (c; if_i)$

Example


```
wp(while i < n do i := i + 1. Q)
L_0(Q) : \Leftrightarrow \text{false}
L_1(Q) : \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_0(Q)))
            \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow \text{ false})
            \Leftrightarrow i \not < n \land Q
L_2(Q) : \Leftrightarrow (i \nleq n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_1(Q)))
            \Leftrightarrow (i \not< n \Rightarrow Q) \land
                      i < n \Rightarrow (i + 1 \not< n \land Q[i + 1/i])
L_3(Q) : \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_2(Q)))
            \Leftrightarrow (i \not< n \Rightarrow Q) \land
                      (i < n \Rightarrow ((i+1 \not< n \Rightarrow Q[i+1/i]) \land
                                (i+1 < n \Rightarrow (i+2 \not< n \land Q[i+2/i])))
```

Weakest Preconditions for Loops

- Sequence $L_i(Q)$ is now monotonically decreasing in strength:
 - $\forall i \in \mathbb{N} : L_i(Q) \Rightarrow L_{i+1}(Q).$
- The weakest precondition is the "greatest lower bound":
 - $\forall i \in \mathbb{N} : L_i(Q) \Rightarrow wp(\mathbf{while} \ b \ \mathbf{do} \ c, Q).$
 - $\forall P : (\forall i \in \mathbb{N} : L_i(Q) \Rightarrow P) \Rightarrow (wp(while b do c, Q) \Rightarrow P).$
- We can only compute a stronger approximation $L_i(Q)$.
 - $L_i(Q) \Rightarrow wp(\mathbf{while}\ b\ \mathbf{do}\ c, Q)$.
- We want to prove $\{P\}$ c $\{Q\}$.
 - It suffices to prove $P \Rightarrow wp(\mathbf{while}\ b\ \mathbf{do}\ c, Q)$.
 - It thus also suffices to prove $P \Rightarrow L_i(Q)$.
 - If proof fails, we may try the easier proof $P \Rightarrow L_{i+1}(Q)$

Verifications are typically not successful with finite approximation of weakest precondition.

- 1. The Hoare Calculus for Non-Loop Programs
- 2. Predicate Transformers
- 3. Partial Correctness of Loop Programs
- 4. Total Correctness of Loop Programs
- 5. Abortion
- 6. Procedures

Abortion

New rules to prevent abortion.

- New interpretation of $\{P\}$ c $\{Q\}$.
 - If execution of c starts in a state, in which property P holds, then it does not abort and eventually terminates in a state in which Q holds.
- Sources of abortion.
 - Division by zero.
 - Index out of bounds exception.

D(e) makes sure that every subexpression of e is well defined.

Definedness of Expressions


```
D(0) : \Leftrightarrow true.
D(1) : \Leftrightarrow \mathsf{true}.
D(x) : \Leftrightarrow true.
D(a[i]) : \Leftrightarrow D(i) \land 0 \le i < length(a).
D(e_1 + e_2) : \Leftrightarrow D(e_1) \wedge D(e_2).
D(e_1 * e_2) :\Leftrightarrow D(e_1) \wedge D(e_2).
D(e_1/e_2) : \Leftrightarrow D(e_1) \wedge D(e_2) \wedge e_2 \neq 0.
D(true) : \Leftrightarrow true.
D(false) : \Leftrightarrow true.
D(\neg b) :\Leftrightarrow D(b).
D(b_1 \wedge b_2) :\Leftrightarrow D(b_1) \wedge D(b_2).
D(b_1 \vee b_2) :\Leftrightarrow D(b_1) \wedge D(b_2).
D(e_1 < e_2) : \Leftrightarrow D(e_1) \wedge D(e_2).
D(e_1 < e_2) : \Leftrightarrow D(e_1) \wedge D(e_2).
D(e_1 > e_2) :\Leftrightarrow D(e_1) \wedge D(e_2).
D(e_1 > e_2) :\Leftrightarrow D(e_1) \wedge D(e_2).
```

Assumes that expressions have already been type-checked.

Abortion

Slight modification of existing rules.

$$\frac{\{P \land b \land D(b)\}\ c_1\ \{Q\}\ \{P \land \neg b \land D(b)\}\ c_2\ \{Q\}\}}{\{P\}\ \textbf{if}\ b\ \textbf{then}\ c_1\ \textbf{else}\ c_2\ \{Q\}}$$

$$\frac{\{P \land b \land D(b)\}\ c\ \{Q\}\ (P \land \neg b \land D(b)) \Rightarrow Q}{\{P\}\ \textbf{if}\ b\ \textbf{then}\ c\ \{Q\}}$$

$$P \Rightarrow I\ I \Rightarrow (T \in \mathbb{N} \land D(b))$$

$$\frac{\{I \land b \land T = t\}\ c\ \{I \land T < t\}\ (I \land \neg b) \Rightarrow Q}{\{P\}\ \textbf{while}\ b\ \textbf{do}\ c\ \{Q\}}$$

Expressions must be defined in any context.

Abortion

34/41

Similar modifications of weakest preconditions.

```
\begin{array}{l} \mathsf{wp}(\mathbf{abort}, Q) \Leftrightarrow \mathsf{false} \\ \mathsf{wp}(x := e, Q) \Leftrightarrow Q[e/x] \wedge D(e) \\ \mathsf{wp}(\mathsf{if}\ b\ \mathsf{then}\ c_1\ \mathsf{else}\ c_2, Q) \Leftrightarrow \\ D(b) \wedge (b \Rightarrow \mathsf{wp}(c_1, Q)) \wedge (\neg b \Rightarrow \mathsf{wp}(c_2, Q)) \\ \mathsf{wp}(\mathsf{if}\ b\ \mathsf{then}\ c, Q) \Leftrightarrow D(b) \wedge (b \Rightarrow \mathsf{wp}(c, Q)) \wedge (\neg b \Rightarrow Q) \\ \mathsf{wp}(\mathsf{while}\ b\ \mathsf{do}\ c, Q) \Leftrightarrow \exists i \in \mathbb{N}: L_i(Q) \\ \\ L_0(Q) :\Leftrightarrow \mathsf{false} \\ L_{i+1}(Q) :\Leftrightarrow D(b) \wedge (\neg b \Rightarrow Q) \wedge (b \Rightarrow \mathsf{wp}(c, L_i(Q))) \end{array}
```

wp(c, Q) now makes sure that the execution of c does not abort but eventually terminates in a state in which Q holds.

- 1. The Hoare Calculus for Non-Loop Programs
- 2. Predicate Transformers
- 3. Partial Correctness of Loop Programs
- 4. Total Correctness of Loop Programs
- 5. Abortion
- 6. Procedures

Procedure Specifications


```
global F;
requires Pre;
ensures Post;
o = p(i) \{ c \}
```

- Specification of procedure o = p(i).
 - Input parameter i, output parameter o.
 - A call has form y = p(e) for expression e and variable y.
 - Set of global variables ("frame") F.
 - Those global variables that p may read/write (in addition to i, o).
 - Let f denote all variables in F.
 - Precondition Pre (may refer to i, f).
 - Postcondition Post (may refer to i, f, f_0, o).
- Proof obligation

$$\{Pre \wedge i_0 = i \wedge f_0 = f\} \ c \ \{Post[i_0/i]\}$$

Procedure Calls

First let us give an alternative (equivalent) version of the assignment rule.

Original:

$$\begin{cases}
 D(e) \land Q[e/x] \\
 x := e \\
 Q
 \end{cases}$$

Alternative:

$$\{D(e) \land \forall x' : x' = e \Rightarrow Q[x'/x]\}$$

$$x := e$$

$$\{Q\}$$

The new value of x is given name x' in the precondition.

Procedure Calls

From this, we can derive a rule for the correctness of procedure calls.

$$\begin{cases} D(e) \land Pre[e/i] \land \\ \forall y', f' : Post[e/i, y'/o, f/f_0, f'/f] \Rightarrow Q[y'/y, f'/f] \rbrace \\ p(e, y) \\ \{Q\} \end{cases}$$

- Pre[e/i] refers to the values of the actual argument e (rather than to the formal parameter i).
- y' and f' denote the values of the vars y, and f after the call.
- Post[...] refers to the argument values before and after the call.
- Q[y'/y, f'/f] refers to the argument values after the call.

Modular reasoning: rule only relies on the specification of p, not on its implementation.

Corresponding Predicate Transformers

$$\begin{aligned} & \mathsf{wp}(y = p(e), Q) \Leftrightarrow \\ & D(e) \land Pre[e/i] \land \\ & \forall y', f' : \\ & Post[e/i, y'/o, f/f_0, f'/f] \Rightarrow Q[y'/y, f'/f] \\ & \mathsf{sp}(P, y = p(e)) \Leftrightarrow \\ & \exists y_0, f_0 : \\ & P[y_0/y, f_0/f] \land Post[e[y_0/y, f_0/f]/i, y/o] \end{aligned}$$

Explicit naming of old/new values required.

Procedure Calls Example

Procedure specification:

```
global f
requires f \ge 0 \land i > 0
ensures f_0 = f \cdot i + o \land 0 \le o < i
o = dividesF(i)
```

Procedure call:

$$\{f \ge 0 \land f = N \land b \ge 0\}$$

y = divides $F(b+1)$
 $\{f \cdot (b+1) \le N < (f+1) \cdot (b+1)\}$

To be ultimately proved:

$$f \ge 0 \land f = N \land b \ge 0 \Rightarrow \\ D(b+1) \land f \ge 0 \land b+1 > 0 \land \\ \forall y', f': \\ f = f' \cdot (b+1) + y' \land 0 \le y' < b+1 \Rightarrow \\ f' \cdot (b+1) \le N < (f'+1) \cdot (b+1)$$

Not Yet Covered

- Primitive data types.
 - int values are actually finite precision integers.
- More data and control structures.
 - switch, do-while (easy); continue, break, return (more complicated).
 - Records can be handled similar to arrays.
- Recursion.
 - Procedures may not terminate due to recursive calls.
- Exceptions and Exception Handling.
 - Short discussion in the context of ESC/Java2 later.
- Pointers and Objects.
 - Here reasoning gets complicated.

The more features are covered, the more complicated reasoning becomes.