.M.E.

Core Claim %

Formal Methods in Software Development
Computer programs/systems are subject to exact reasoning.

Computer programming is an exact science in that all the properties
of a program and all the consequences of executing it in any given
environment can, in principle, be found out from the text of the
program itself by means of purely deductic reasoning.

Wolfgang Schreiner

Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria C.A.R. Hoare, “An Axiomatic Basis for Computer Programming”,
http://www.risc.uni-linz.ac.at 1969.
M.E A strong claim; not everyone might agree to it (we will rephrase it later).

.%. {.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 1/18 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/18
o o
E | ’M E’ D trati °M E’
xamplie emonstration
"4 W
s . class Swap
static int sum(int[] a) c
{ . // swap a[il] and a[j]
int n = a.length; static void swap(int[] a, int i, int j)
int s = 0; {
{n = length(a) A s = 0} int t = alil;
for (int i=0; i<n; i++) alil = aljl;
{ ) aljl = t;
{n=length(a) As = Z};é aljjA0<i< n} ¥
s = s+ali];
} // swap the first two elements of a
{n _ Iength(a) As— Z;:—Ol a[]]} ztatic void swapFirst(int[] a)
return s;
swap(a, 0, 1);
¥ }
}

We will investigate what can go wrong.

Wolfgang Schreiner http://www risc.uni-linz.ac.at 3/18 Wolfgang Schreiner http://www risc.uni-linz.ac.at 4/18



ZAY ZAY

Demonstration (Contd) s Aspects RN
W W
This reasoning has various aspects:
zlass Hain ztatic void init(intl] a, int n) Specification. State the properties that a program shall have.
public static void main(String[] args) f°r[§]int i=0; idn; i++) Verification. Argue why a particular program satisfies a given
t int n = parseInt(args[0]); } I specification (in every execution).
int[] a = new int[n]; o . Falsification. Detect that a program violates a specification (in some
init(a, n); static void print(int[] a, int n) i
print(a, n); { eXECUtIOﬂ).
Swap.swapFirst(a); for (int i=0; i<n; i++)

Transformation. Transform a program that it preserves its behavior

print(a, n); {
} System.out.print(alil); (but e.g. improves its execution time).
System.out.print(’ ’); . . . P
static int parselnt(String s) } Derivation. Construct a program in such a way that it is guaranteed
{ System.out.println(""); to satisfy a given specification.
return Integer.parselnt(s); }
} }

This course deals with specification and verification/falsification.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 5/18 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/18
Z@Y Z@Y
Properties of Reasoning X * Alternatives to Reasoning X *
Ny Ny

Inspection. Let multiple people look at program and discuss it.
Actually, this is reasoning (but without a formal basis).
Advantages: reduces programmer’s “system blindness” .
Disadvantage: without a formal basis, it is unclear what rules guide
the discussion.

Principal advantage: clarity and generality.
The subjects of discussion are well defined.
There are clear rules for the correctness of the arguments.
The arguments may apply to infinitely many situations.
Example: {x > 0}x = x+1{x > 0}
(for all x, to show that x is greater than zero after the execution of
the assignment statement, it suffices to show that x is greater than or
equal to zero before).

Testing. Run the program with sample inputs and observe the
external effects (see what happens).

Advantage: the program is shown to work in certain situations.

Principal disadvantage: abstraction.

We reason about models of the real world.

Questionable whether the model adequately describes the real world.
Example: the machine code generated by the compiler for x = x+1
may be wrong, or the processor may have an error in the
implementation of the + operation, or ...

All reasoning is relative to the assumptions of the model.

Wolfgang Schreiner

http://www risc.uni-linz.ac.at 7/18

Wolfgang Schreiner

Disadvantage: you never know what happens with other inputs.

In concurrent programs, you even do not now whether the same

behavior is always exhibited with the same input.
Simulation/Visualization. Similar to testing, but also observe the
internal behavior of the program.

Advantage: consideration not limited to external effects.

Disadvantages: same as for testing.

http://www risc.uni-linz.ac.at 8/18



- : 07\
The Power and Limits of Reasoning .E {'

Assume a correct proof that program P satisfies specification S.

We have shown
that every model execution of P satisfies S,
which is also true for all real executions of P if the model is adequate.
We have not shown
that any real execution of P satisfies S,
Beware of bugs in the above code; | have only proved it
correct, not tried it. Donald E. Knuth, 1977.
that S captures your expectation of a real world behavior.
On the other hand, with a successful test run
we demonstrate that some real execution of P satisfies an expectation,
we cannot show that this is true for all real executions of P.
Program testing can be used to show the presence of bugs,
but never to show their absence! E.W Dijkstra, 1972.

Reasoning and testing have both their place.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/18
Z4Y
The Role of Reasoning X *
"4

Often: Post Factum Better: Pre Factum

Specification Specification

Reasoning Reasoning

Modeling Implementing

Real
System

Write a specification, design a model system, reason about its
correctness, then implement the design, then test the implementation.

Wolfgang Schreiner http://www risc.uni-linz.ac.at 11/18

_ 7Y
Core Claim Rephrased °§ {°

True interpretation of Hoare's statement:

Computer programming is an exact science in that all the properties
of a model program and all the consequences of executing it in any
given model environment can, in principle, be found out from the text
of the program itself by means of purely deductic reasoning.

Still a strong claim, but now everyone should be able to agree to it.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/18
Z4Y
The Role of Reasoning X *
"4

So the main role of reasoning is on program/system designs:
Design a principal solution to a given problem.
Argue about the correctness of the design.
Thus find design errors; repeat process until you are satisfied.
The main role of testing is on program/system implementations:

Map the design to real computers using real programming languages.
Run the implementation on sample inputs and check its behavior.
Thus find implementation errors; repeat process until you are satisfied.

This is a big difference from “proving that a program is correct”.

Wolfgang Schreiner http://www risc.uni-linz.ac.at 12/18



| o/
The Role of Reasoning °§ {.

Apparently, there are various approaches/tools that seem to apply
reasoning to real systems ...

Typical goal: prevent runtime errors.
Division by zero, array index out of bounds, null pointer dereferences,
memory corruptions (buffer overflows).
Tool that takes program as input and detects program errors.
Actually: operate on automatically constructed models.

Focus is on falsification (finding errors).
Investigate whether “bad” states might occur in model.
Detected /assumed error in model may imply error in real system.

Application to mission-critical /important pieces of software.

Airplane control software.
MS Windows device driver.

We alwas reason about models.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/18
Z4Y
The Origins: Concurrent Programs .E {'
L]

A personal selection.

Dijkstra, 1968: Cooperating Sequential Processes.

Ashcorft and Manna, 1971: Formalization of Properties of Parallel
Programs.

Owicki, Gries, 1976: An Axiomatic Proof Technique for Parallel
Programs.

C.A.R. Hoare, 1978: Communicating Sequential Processes.

Armin Pnueli, 1979: The Temporal Logic of Programs.

Leslie Lamport, 1980: The “Hoare Logic” of Concurrent Programs.
Robin Milner, 1982: A Calculus of Communicating Systems.

Axiomatic semantics, process calculus/algebra, temporal logic.

Wolfgang Schreiner http://www risc.uni-linz.ac.at 15/18

. : 07\
The Origins: Sequential Programs W

A personal selection.

Robert W. Floyd, 1967: Assigning Meaning to Programs.

C.A.R. Hoare, 1969: An Axiomatic Basis for Computer
Programming.

C.A.R. Hoare, 1972: Proof of Correctness of Data Representations.

Edsger W. Dijkstra, 1975: Guarded Commands, Nondeterminacy
and Formal Derivation of Programs.

Edsger W. Dijkstra, 1976: A Discipline of Programming.
Luckham et al, 1979: Stanford PASCAL Verifier - User Manual.
David Gries, 1981: The Science of Programming.

Axiomatic program semantics, program verification.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/18
ZAN
Later History X ¢
W

In the 1980s, program verification was considered “dead” by many.
Little automation, much manual effort by programmer.
Handling of toy programs only.

In the 1990s, model checkers became successful.

Fully automatically check (finite state) models.
Verification of hardware and of communication protocols.
Systems with state spaces of size 10'°° and beyond.

Since the late 1990s, interest in software verification revived.

Model checking/proving of critical pieces of software.
Focus often more on falsification than on verification.
New applications such as proof-carrying-code (PCC).
Ship machine code together with proof that code satisfies certain
safety/security properties.

New issues such as security considered.

Formal methods are a hot topic today (also in industry).

Wolfgang Schreiner http://www risc.uni-linz.ac.at 16/18



74\ _ 7Y
Languages and Systems N Course Qutline S

Specification Languages Specifying and verifying sequential programs.
Hoare style: VDM (Vienna Development Method), SPARK (SPADE
Ada Kernel), Larch/C++, OCL (Object Constraint Language for
UML), JML (Java Modeling Language), ...
Algebraic/axiomatic: OBJ, ACT One, CafeOBJ, Larch, CASL, ...

Hoare calculus and predicate transformers.
Computer-supported program verification (RISC ProofNavigator).

Specifying and verifying Java programs.

State-oriented: Z, ASM (Abstract State Machines), ... Java modeling language (JML).
Concurrent: Unity, Estelle, Lotos, TLA, ... Extended static checking of Java programs (ESC/Java2).
Mobile: pi-Calculus, . .. Verifying Java programs (KeY).

Model Checkers Specifying and verifying concurrent systems.

Spin, SMV, BLAST, Bandera, SLAM, VeriSoft, ... State graphs for synchronous and asynchronous systems.
Automated Provers Specifying properties of concurrent systems in temporal logic.
PVS, HOL, Isabelle, Coq, Theorema, ... Verifying and model-checking concurrent systems (Spin).
Verification Environments Proof-Carrying Code (PCC): Hans-Wolfgang Loidl (LMU Munich)

Edinburgh Concurrency Workbench, STeP (Stanford Temporal Mobile code carrying a proof of its safety.
Prover), KIV (Karlsruhe Interactive Verifier), JIVE (Java Interactive ) !
Verification Environment), LOOP, Krakatoa/Why, KeY, ... A cross-section of the field.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 17/18 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 18/18



