A Theoretical Basis of
Communication-Centred Concurrent
Programming

Marco Carbon&2 Kohei Honda Nobuko Yoshida
Robin MilneP Gary Browrf Steve Ross-Talbbt

1Queen Mary, University of London, UK
2 Imperial College, London, UK

3 University of Cambridge, UK

4 Pi4 Technologies Ltd

Abstract.

This document presents two different paradigms of desorippf communication behaviour,
one focussing on global message flows and another on entdhediaviours, as formal calculi based
on session types. The global calculus originates from GQigyegphy Description Language, a web
service description language developed by W3C WS-CDL wgrkiroup. The end-point calculus is
a typedrtcalculus. The global calculus describes an interactiemaco from a vantage viewpoint;
the endpoint calculus precisely identifies a local behavideach participant. After introducing the
static and dynamic semantics of these two calculi, we egaheory of endpoint projection which
defines three principles for well-structured global dgsttwn. The theory then defines a translation
under the three principles which is sound and complete is¢hee that all and only behaviours speci-
fied in the global description are realised as communicationong end-point processes. Throughout
the theory, underlying type structures play a fundameimta. r

The document is divided in two parts: part | introduces the tlescriptive frameworks using
simple but non-trivial examples; the second part estadtish theory of the global and end-point
formalisms.

Contents

Abstract.

Part 1.

1.

arwd

10.
11.
12.
13.
14.
15.
16.
17.
18.

Introductory Examples
Introduction to Part 1
Describing Communication Behaviour (1)
Describing Communication Behaviour (2)
Describing Communication Behaviour (3)
Correspondence with CDL

A Formal Theory of Structured Global Programming
Introduction to Part 2
Informal Preview
Global Calculus (1): Syntax
Global Calculus (2): Reduction
Global Calculus (3): Typing
End-Point Calculus (1): Syntax and Reduction
End-Point Calculus (2): Typing
Theory of End-Point Projection (1): Connectedness
Theory of End-Point Projection (2): Well-Threadedness
Theory of End-Point Projection (3): Coherence
Main Results: EPP Theorem and its Consequences
Extension and Applications
Related Work

Bibliography

Appendix

Appendix A. Subject Reduction for the global calculus typstem

Appendix B. Subject Reduction for the end-point calculysetgystem

Appendix C. Alternative Inference Algorithm for Well-tradedness

25
27
28
31
36
41
52
58

72
83

110
114

117

119
121
123

125

66

91

Part 1

Introductory Examples

1. Introduction to Part 1

This paper introduces two different ways of describing camioation-centred software in the
form of formal calculi and discusses their relationship.ofdifferent frameworks of description, one
centring on global message flows and another centring on (ead-point) behaviours, share the
common featurestructured representation of communicatioi$ie global calculus originates from
Choreography Description Language (CDBY], a web service description language developed by
W3C’s WS-CDL Working Group. The local calculus is based oafitcalculus B5], one of the
representative calculi for communicating processes. Vsvsiiny well-formed description (in a
technical sense we shall make clear) in the global calculissahprecise representation in the local
calculus.

Both calculi are based on a common notion of structured coniration, calledsession A
session binds a series of communications between two pantie one, distinguishing them from
communications belonging to other sessions. This is a atdrngtactice in business protocols (where
an instance of a protocol should be distinguished from aratistance of the same or other proto-
cols) and in distributed programming (where two interagtparties use multiple TCP connections
for performing a unit of conversation). As we shall explanghe present paper, the notion of session
can be cleanly integrated with such notions as branchimgysen (loop) and exceptions. We show,
through examples taken from simple but non-trivial bussngotocols, how concise structured de-
scription of non-trivial interactive behaviour is pos&hlsing sessions. From a practical viewpoint,
a session gives us the following merits.

e |t offers a clean way to describe a complex sequence of conuations with rigorous
operational semantics, allowing structured descriptibimt@ractive behaviour.

e Session-based programs can use a simple, algorithmidéityeat typing algorithm to
check its conformance to expected interaction structures.

e Sessions offer a high-level abstraction for communicatiehaviour upon which further
refined reasoning techniques, including type/transitigyi¢-based ones, can be built.

The presentation in this paper focusses the first point, ames$ @ formal basis for the second point.
A full discussion of the second point and exploration of thiect point are left to a later version of
this paper and in its sequels.

An engineering background of the present work is the expdogrowth of the Internet and
world-wide web which has given rise to, in the shape of dedfatandards, an omnipresent haming
scheme (URI/URL), an omnipresent communication proto¢idl8TP/TCP/IP) and an omnipresent
data format (XML). These three elements arguably offer theikfra-structural bases for application-
level distributed programming. This engineering backgibmakes it feasible and advantageous to
develop applications which will be engaged in complex sages of interactions among two or more
parties. Another background is maturing of theories of psses centring on thirecalculus and its
types. Thatcalculus and its theories of types are singular in that ndt do they enable a study of
diverse ways for structuring communication but also thégvafruitful and often surprising connec-
tions to existing formalisms including process algebrag.(€SP and CCS), functional computation
(e.g. A-calculus), logics (Linear Logic) and objects (e.g. Ja¥ée believe a combination of strong
practical needs for interactional computation and rictoteécal foundations will lead to rich dia-
logues between practice and theories. The present workensded to offer some of the technical
elements which may become useful in this dialogue.

This paper consists of two parts. In the first part, which hesfirst give sections including this
Introduction, we informally introduce two paradigms of deking interactions through incremen-
tally complex examples. These examples come from use-fas€PDL found in CDL primer 5]
by Steve Ross-Talbot and Tony Fletcher, and those exampiesianicated by Gary Browri§] and
Nickolas Kavanztas2d]. In the second part, which form the remaining sections,mMm@duce formal
semantics, type discipline, and the formal connection betwthe core parts of these two formalisms.

Structure of the paper. In the rest of this paper, Sections 2, 3 and 4 are devoted ¢onva
illustration of key technical elements through descriptaf small but non-trivial use-cases in the
global and local calculi. The description starts from a dergxample and reaches a fairly complex
one, illustrating the essence of each construct as well@seiationship between their respective
global descriptions and the corresponding local ones. i@e8étcomments on the correspondence
and differences between our formal calculi and CDL. The sdqgart (from Section 6 to Section
18) formally introduces two calculi (the global calculusSections 8, 9 and 10; and the endpoint
calculus in Sections 11 and 12), then develops the theormapeint projections for these calculi
(in Sections 13, 14, 15 and 16), and concludes the paper eliited works and further topics (in
Section 18). The appendix offers further technical details

Buyer Seller Shipper

RequestForQuote

QuoteResponse

QuoteAcceptance
Choice{ QuoteReject

| OrderConfirmation| RequestDelDetails

DeliveryDetails

DeliveryDetails

FIGURE 1. Graphical Representation of Simple Protocol

2. Describing Communication Behaviour (1)

2.1. A Simple Business Protocolln this section and the next, we show how small, but in-
creasingly complex, business protocols can be accuratelycancisely described in two small pro-
gramming languages, one based on global message flows atietabased on local, or end-point,
behaviours. Along the way we also illustrate each conswéithese mini programming languages
(whose formal semantics is discussed in the second paregfaper).

Our starting point is a simple business protocol for purgigaa good among a buyer, a seller
and a shipper, which we calimple BSH Protocol Informally the expected interaction is described
as follows.

(1) First, Buyer asks Seller, through a specified channelffey a quote (we assume the good
to buy is fixed).

(2) Then Seller replies with a quote.

(3) Buyer then answers with eith@QuoteAcceptance or QuoteRejection. If the answer is
QuoteAcceptance, then Seller sends a confirmation to Buyer, and sends a chafine
Buyer to Shipper. Then Shipper sends the delivery detaiBuger, and the protocol
terminates. If the answer QuoteRejection, then the interaction terminates.

Figure 1 presents an UML sequence diagram of this protodase@e that, in Figure 1, many details
are left unspecified: in real interaction, we need to spefifyexample, the types of messages and the
information exchanged in interaction, etc. While the pooialoes not include practically important
elements such as conditional and loops, its simplicitye®as a good starting point for introducing
two formalisms.

2.2. Assumption on Underlying Communication MechanismsWe first outline the basic
assumptions common to both global and local formalismsoBahd henceforth we call the dramatis
personae of a protocol (Buyer, Seller and Shipper in thegmtasase)participants

e We assume each participant either communicates througimelsaor change the content
of variables local to it (two participants may have their oeal variables with the same
name but they are considered distinct).

e In communication:

(1) A sender participant sends a message and a receivevesdgii.e. we only con-
sider a point-to-point communication. A communication lisays done through a
channel The message in a communication consists of an operator aathevhen
there is a value passing, a value. The value will be assignaddcal variable at the
receiver’s side upon the arrival of that message.

(2) Communication can be either amsession communicatiomhich belongs to a ses-
sion, orsession initiation channelshich establishes a session (which may be liked
to establishing one or more fresh transport connections foiece of conversation
between two distributed peers). In a session initiationmomication, one or more
fresh session channels belonging to a session are dedaredne session can use
multiple channels.

(3) A channel can be either session channelhich belongs to a specific session or
an session-initiating channelhich is used for session-initiation. For a session-
initiating channel, we assume its sender and a receiveeisigtermined.

e \We may or we may not demand:
(1) the order of messages from one participant to anotheugir a specified channel is
preserved.
(2) each communication is synchronous, i.e. a sender imatedgiknows the arrival of
a message at a receiver.
(3) one party participating in a session can use a sessianneth both for sending and
receiving.
The last three assumptions which we leave undermined dct affgay to formalise protocols, as well
as for understanding their formal properties. Neverthethe existence or lack of these assumptions
do not substantially affect the informal discussions is #mid the next section.

2.3. Representing Communication (1): Initiating SessionBuyer's session-initiating com-
munication in Simple BSH Protocol is described in the glaiz@tulus as follows.

1) Buyer — Seller : InitB2S(B2Sch . |

which says:
Buyer initiates a session with Seller by communication tigio a session-
initiating channelNITB2S, declaring a fresh in-session chanB2Sch Then
interaction moves té.

Note “.” indicates sequencing, as in process calculi. A sessidiaiitin can specify more than one
session channels as needed, as the following example shows.

2 Buyer — Seller : InitB2S(B2Sch, S2Bchl

which declares two (fresh) session channels, one from Btoy&eller and another in the reverse
direction.

In local description, the behaviour is split into two, one Buyer and another for Seller, using
the familiar notation from process algebras. For exampld€tomes:

(3) Buyer][InitB2S (B2Sch). Py |, Seller[InitB2S (B2Sch). P, |

Above Buyer[P] specifies a buyer’s behaviour, whileller[P | specifies a seller's behaviour. The
over-lined channel indicates it is used for output (thiddwk the tradition of CCSF-calculus: in
CSP, the same action is writtémtB2S! (B2Sch).

Note the behaviour of each participant is described rathen their interaction. When these
processes are combined, they engage in interaction aslesan the scenario above.

2.4. Representing Communication (2): In-session Commurétion. An in-session commu-
nication specifies an operator and, as needed, a messagatcdiitst we present interaction without
communication of values.

(4) Buyer — Seller : B2SchQuoteRequest) .1’

whereB2Schis an in-session channel. It says:
Buyer sends QuoteRequegnessage to Seller, then the interactibensues.
The same behaviour can be written down in the local calcuidus a

(5) B2SchQuoteRequest). Py, B2SchQuoteRequest).P;
An in-session communication may involve value passingpbaws.

(6) Seller — Buyer : S2BchQuoteResponse, 3,000 X). |’
which says:

Seller sends QuoteRespons-message with valug 000to Buyer; Buyer, upon
reception, assigns the received valBe)00, to its local variable x.

This description can be translated into end-point behasias follows.
) S2BchQuoteResponse, 3,000 . Py, S2BchQuoteResponse, Y).P;
which describes precisely the same communication behaviou

2.5. Representing Branching.In various high-level protocols, we often find the situation
where a sender invokes one of the options offered by a recevenethod invocation in object-
oriented languages is a simplest such example. In a glotailaa, we may write an in-session
communication which involves such a branching behaviodokmws.

{Buyer — Seller : B2SchQuoteAccept).l1}
®) +

{Buyer — Seller : B2SchQuoteReject). Iz}
which reads:

Through an in-session chanr&2Sch, Buyer selects one of the two options

offered by SellerQuoteAccept andQuoteReject, and respectively proceeds

to 11 andls.
The same interaction can be written down in the local cakalsifollows. First, Buyer’s side (the
one who selects) becomes:

{B2SchQuoteAccept)..P }
©) e
{B2SchQuoteReject).P,}

Above® indicates this agent may either behav@a@SchQuoteAccept)..P; orB2SchQuoteReject) . Py,
based on its own decision (this is so-calleternal sum whose nondeterminism comes from its in-
ternal behaviour).

In turn, Seller's side (which waits with two options) beca@ne

{B2SchQuoteAccept).Q1}
(10) +
{B2SchQuoteReject).Q2}

Here+ indicates this agent may either behavaSchQuoteAccept).Qq or asB2SchQuoteReject).Q;
depending on what the interacting party communicates gir®2Sch (this is so-calleéxternal sum
whose nondeterminism comes from the behaviour of an extproaess). Note both branches start
from input through the same chanri&2Sch.

In the local descriptions, the original sum in the globaladiggion in (8) is decomposed into
the internal choice and the external choice. Simildilyresp.l») may be considered as the result of
interactions betweeR; andQ; (resp.P> andQy).

Buyer — Seller : InitB2S(B2Sch).
Buyer — Seller : B2SchQuoteRequest).
Seller — Buyer : B2Sch(QuoteResponse, Vquot e; Xquot e) -
{ Buyer — Seller : B2Sch{QuoteAccept).
Seller — Buyer : B2SchOrderConfirmation).
Seller — Shipper : InitS2H(S2HcHh .
Seller — Shipper : S2HchRequestDeliveryDetails).
Shipper — Seller : S2Hch(DeliveryDetails, Vyetails, Xdetails) -
Seller — Buyer : B2SchDeliverDetails, Xdetails, Ydetails)-O }
+
{ Buyer — Seller : B2SchQuoteReject).0 }

FIGURE 2. Global Description of Simple Protocol

2.6. Global Description of Simple BSH Protocol.We can now present the whole of a global
description of Simple BSH Protocol, in Figure 2. While itsaméng should be clear from our fore-
going illustration, we illustrate the key aspects of theatliggion in the following.

e Buyer initiates a session by invoking Seller through thsigesinitiating channeNITB2S,
declaring an in-session chanm2ISCh. Next, Buyer sends another message to Seller with
the operation nameQuot eRequest ” and without carried values (this message may as
well be combined with the first one in practice).

e Seller then sends (and Buyer receives) a refilyot eResponse” together with the quote
valuevguote- Vquot e iS @ variable local to Seller (its exact content is irrelevagre). This
received value will then be storedigyot e, local to Buyer.

e In the next step, Buyer decides whether the quote is acdeptabnot. Accordingly:

(1) Buyer may sendluoteAccept-message to Seller. Then Seller confirms the pur-
chase, and asks Shipper for details of a delivery; Shippawars with the requested
details (say a delivery date), which Buyer forwards to Sellppon reception of this
message the protocol terminates (denote@,lifre inaction).

(2) Alternatively Buyer may senQuoteReject-message to Seller, in which case the
protocol terminates without any further interactions.

Remark. The description could have used more than one channelsxéon@e, the Buyer-Seller
interactions can us82Bchin addition for communication from Seller to Buyer. The udeoaly
B2Schmay be considered as a way to describe “request-reply” priotiecol inside a session, where
an initial sender sends a request through a channel, anéigeem turn replies leaving the involved
channel implicit (which is a practice found in CDL, cf]).

2.7. Local Description of Simple BSH Protocol.Figure 2 describes Simple BSH Protocol
from a vantage viewpoint, having all participants and theeraction flows in one view. The same
behaviour can be described focussing on behaviours ofithgiV participants, as follows.

The description is now divided into (1) Buyer’s interactivehaviour, (2) Seller’s interactive be-
haviour, and (3) Shipper’s interactive behaviour. We foon8uyer’s behaviour. One can intuitively
see two descriptions of the same protocol, a global versigiigure 2 and a local version in Figure 3,
represent the same software behaviours — we can extracotimef from the latter and vice versa.
We shall later establish such compatibility as a formal itesdowever there is a basic difference
in the nature of descriptions: A global description allovssta see how messages are exchanged

Buyer[InitB2S (B2Sckh).

B2SchQuoteRequest).

B2SchQuoteResponse, Xquote) -

{ B2SchQuoteAccept).
B2SchOrderConfirmation).
B2SchDeliveryDetails, Ygetails)-0 }

S
{ B2SchQuoteReject).0 }]

Seller[InitB2S (B2Scl).
B2SchQuoteRequest).
B2SchQuoteResponse, Vquote) -
{ B2SchQuoteAccept).
B2Sch0rderConfirmation).
1nitS2H (S2Hch .
S2HchDeliveryDetails).
S2Hch{DeliveryDetails, Xgetails) -
B2SchDeliveryDetails, Xgetails)-0 }
4
{ B2SchQuoteReject).0 } |

Shipper[InitS2H (S2Hcl).
S2HchDeliveryDetails).
S2Hch(DeliveryDetails, Vgetails)-0 |

FIGURE 3. Local Description of Simple Protocol

between participants and how, as a whole, the interactienas® proceeds; whereas, in the local
description, the behaviour of each party is made explisiseen in distinct forms of choices used in
Buyer and Seller.

if Xquote < 1000 @Buyer then
{ Buyer — Seller : B2SchQuoteAccept).
Seller — Buyer : B2SchOrderConfirmation).
Seller — Shipper : InitS2H(S2HcHh .
Seller — Shipper : S2HchRequestDeliveryDetails).
Shipper — Seller : S2HchDeliveryDetails, Vyetails, Xdetails) -
Seller — Buyer : B2SchDeliverDetails, Xdetails, Ydetails)-O }
else
{ Buyer — Seller : B2Sch{QuoteReject).0 }

FIGURE 4. Global Description of Simple Protocol with Conditional

Buyer[InitB2S (B2Sch.

B2SchQuoteRequest).

B2SchQuoteResponse, Xquote) -

if Xquote <1000 then

{ B2SchQuoteAccept).
B2SchOrderConfirmation).
B2SchDeliveryDetails, Ydetails)-0 }

else

{ B2SchQuoteReject).0 } |

FIGURES. Local Description of Simple Protocol with Conditionalu§ger)

3. Describing Communication Behaviour (2)

3.1. Conditional. In Simple BSH Protocol, we only specified that Buyer may cleoeher
QuoteAccept or QuoteReject nondeterministically. Suppose we wish to refine the desoripso
that Buyer would choose the former when the quote is biggan i certain amount, otherwise if
else. For this purpose we can use a conditional.

The description now specifies the “reason” why each brandhkisn. Notice the condition in the
conditional branchx < 1000, is explicitlylocated the description says this judgement takes place at
Buyer. The same scenario is described as follows using the end-palculus. Other participants’
behaviours remain the same.

3.2. Recursion. Assume we wish to further refine the protocol with the follog/specification:

If the quote is too high, Buyer asks another quote until ierees a satisfactory

quote.
Such behaviour is easily described using a loop or, morergbperecursion. In Figure 6, we show
the global description of this enhanced protocol. Thereoalg two additional lines: in the second
line, rec X. indicates that, intuitively:

We name the following blocK. If X occurs inside that block, then we again

recur to the top of the block.
In the last line, which is the second branch,recurs again. Thus, at this point, the description
recurs to a point immediately afteec X (i.e. the third line). The significance of recursion is its

10

Buyer — Seller : InitB2S(B2Sch.
rec X.
{ Buyer — Seller : B2SchQuoteRequest).
Seller — Buyer : B2SchQuoteResponse, Vquot e, Xquot e) -
if Xguote < 1000 @uyer then
{ Buyer — Seller : B2SchQuoteAccept).
Seller — Buyer : B2SchOrderConfirmation,).
Seller — Shipper : InitS2H(S2HcH .
Seller — Shipper : S2Hch(RequestDeliveryDetails).
Shipper — Seller : S2Hch(DeliveryDetails, Vetails, Xdetail s) -
Seller — Buyer : B2SchDeliverDetails, Xdetails; Ydetails)-O }
else
{ Buyer — Seller : B2SchQuoteReject). X } }

FIGURE 6. Global Description of Simple Protocol with ConditionaldaRecursion

expressiveness (it can easily express various forms ofsjoapd its theoretical tractability. In the
description, it is assumed that the valg,:e Will be updated appropriately by Seller, which is
omitted from the protocol description.

It is instructive to see how this recursion is translated iemd-point behaviour. We present the
local counterpart of Figure 6 in Figure 7 (we omit Shippershaviour which does not change).
Observe both Buyer and Seller use recursion, so that thegaaboratively be engaged in recur-
sive interactions. No change is needed in Shipper’s locatrijgtion, since it does not involve any
recursion.

3.3. Timeout. Let’s consider refining Simple BSH protocol as follows:
If Buyer does not reply in 30 seconds after Seller presentsodeg then Seller
will abort the transaction. Once Seller decides to do sonéfa confirmation
message arrives from Buyer later, it is deemed invalid.
For describing this refined behaviour, we first should haveeams to describe a timeout. We consider
this mechanism consisting of (1) creating a timer with a totevalue; (2) starting a timer; and (3)
exception is thrown when a time out occurs. This excepti@idgal exceptionin the sense that we
consider our abstract notion of exceptions on the basiseofaliowing infra-structural support:
All exceptions are caught and handled within a participacally (a participant
may interact with other parties as a result).
This is the standard, low-cost mechanism employed in manytimes such as those of Java and
C++.
Let us see how this can be realised in concrete syntax. Wediige the global description in
Figure 2. Some comments:

e Inthefirstline (initiating a session), two session chasy®&2Sch(for default communica-
tions) andS2Babori(for aborting a transaction), are communicated throm@B2S. This
generalised form of a session, where participants can usgpfawchannels in a single
session, is useful for varied purposes.

11

Buyer[InitB2S (B2Sch.
rec X.
{ B2SchQuoteRequest).
B2SchQuoteResponse, Xquote) -
if Xquote <1000 then
{ B2SchQuoteAccept).
B2SchOrderConfirmation).
B2SchDeliveryDetails, Yyetails)-0 }
else
{ B2SchQuoteReject).X } } |

Seller[InitB2S (B2Sck).
rec X.
{ B2SchQuoteRequest).
B2SchQuoteResponse, Vquote) -
{ B2SchQuoteAccept).

B2Sch0rderConfirmation).

InitS2H (S2Hch .
S2HchDeliveryDetails).
S2Hch{DeliveryDetails, Xgetails) -

B2SchDeliveryDetails, Xgetails)-0 }

4
{ B2SchQuoteReject).X }]

FIGURE 7. Local Description of Simple Protocol with Recursion (RuABeller)

Buyer — Seller : InitB2S(B2Sch, S2Babort
Buyer — Seller : B2SchQuoteRequest).
Seller — Buyer : B2Sch(QuoteResponse, Vquot e; Xquot e) -
lett = timer (30)@Seller in {
{ Buyer — Seller : B2Sch(QuoteAccept) timer (t).
Seller — Buyer : B2Sch(OrderConfirmation).
Seller — Buyer : B2SchDeliverDetails, Xdetails, Ydetails)-O }
+
{ Buyer — Seller : B2Sch(QuoteReject) timer(t).0 }
catch (timeout(t))
{ Seller — Buyer : S2BabortAbort).0 } }

FIGURE 8. Global Description of Simple Protocol with Timeout

e In the fourth line, a timet with timeout value 30 is initiated at Seller. This timer Wik
stopped if the input guard specifying that timer (Lines 6 a0) receives a message (the
two branches of a single choice have the same timer).

12

Seller[InitB2S (B2Sch, S2Baboyt
B2SchQuoteRequest).
B2SchQuoteResponse, Vquote) -
lett =timer(30)in {

{ B2SchQuoteAccept) timer(t).
B2SchOrderConfirmation).
B2SchDeliveryDetails, Xgetails)-0 }

4

{ B2SchQuoteReject) timer(t).0 }

catch (timeout(t))

{ S2Babor{Abort)abort.0 } }]

Buyer[InitB2S (B2Sch, S2Baboyt
{

B2SchQuoteRequest).
B2SchQuoteResponse, Xquote) -

{ B2SchQuoteAccept).
B2Sch0rderConfirmation).
B2SchDeliveryDetails, Xgetails)-0 }

2
{ B2SchQuoteReject).0
}
par
{ S2Babort{Abort)abort .0 }

]

FIGURE 9. Local Description of Simple Protocol with Timeout

e In the second line to the last, an exception handler is giwdnich says: when the timer
fires, Seller will send an abort message Buyer. It is omitted that, if Buyer's message
arrives, Seller behaves as a sink, i.e. does nothing.

The same protocol can be described using the local formadidended with timeout as follows.
As before, in the exception branch, that Seller is assuméeghave as a sink to messageszgch
(i.e. B2SchQuoteAccept).0+ B2SchQuoteReject).0 is omitted: it is possible it would behave
non-trivially after it is in the abort mode). On the other Haim Buyer’s behaviour, we uggr which
indicates parallel composition. This behaviour is the sambefore except the reception at the abort
channel is added on parallel.

3.4. Combining Conditional, Recursion and Timeout.As a conclusion to this section, we
present the combination of all constructs we have introdwscefar. Figure Figure 10 gives a global
description of the following behaviour:

(1) First, Buyer asks Seller, through a specified channealffey a quote (we assume the good
to buy is fixed).

(2) Then Seller replies with a quote.

(3) Buyer then answers with either “I will buy” (if the price cheap) or “I will not buy” (if
not) to Seller. S

(4) If the answer is “I will buy”, then Seller sends a confirimoat to Buyer, and sends a
channel of Buyer to Shipper. Then Shipper sends the deligetsils to Buyer, and the
protocol terminates.

(5) Ifthe answer is “I will not buy”, then the interaction nas to (1) above.

13

Buyer — Seller : InitB2S(B2Sch).
rec X. {
Buyer — Seller : B2SchQuoteRequest) .
Seller — Buyer : B2SchQuoteResponse, Vquot e; Xquot e) -
lett = timer (30)@Seller in {
if (Xquote < 1000 @Buyer) {
Buyer — Seller : B2SchQuoteAccept) timer (t).
Seller — Buyer : B2Sch(OrderConfirmation).
Seller — Shipper : InitS2H(S2HcH .
Seller — Shipper : S2Hch(RequestDeliveryDetails).
Shipper — Seller : S2Hch(DeliveryDetails, Vyetails, Xdetails) -
Seller — Buyer : B2SchDeliverDetails, Xetails, Ydetails) -
0
} else{
Buyer — Seller : B2SchQuoteReject) timer(t). X }
catch (timeout(t)) {
Seller — Buyer : S2Babor{Abort).0

FIGURE 10. Global Description of BSH Protocol with Conditionaltw' Timeout

(6) If Buyer does not reply in time, Seller will abort the tsattion.
The local description is given in Figure 11.

14

Buyer[InitB2S (B2Sch, S2Babort
{

rec X.

{ B2SchQuoteRequest).
B2SchQuoteResponse, Xquote) -
if Xquote < 1000 then
{ B2SchQuoteAccept).

B2SchOrderConfirmation).
B2SchDeliveryDetails, Ygetails)-0 }
else
{ B2SchQuoteReject).X } }

par

S2Babor{ABORT, Xanort) - O

}
]

Seller[InitB2S (B2Sck).
rec X.
{ B2SchQuoteRequest).
B2SchQuoteResponse, Vquote,) -
lett =timer(30)in {
{ B2SchQuoteAccept) timer (t).
B2Sch0rderConfirmation).
1nitS2H (S2Hch .
S2HchDeliveryDetails).
S2Hch{DeliveryDetails, Xgetails) -
B2SchDeliveryDetails, Xgetails)-0 }
4
{ B2SchQuoteReject) timer.X }
catch (timeout(t))
{ S2BabortAbort,abort).0 }
}

]

Shipper[InitS2H (S2Hcl).
S2HchDeliveryDetails).
S2HchDeliveryDetails, Vgetails)-0]

FIGURE 11. End-Point Description of BSH Protocol with Conditiathalop/Timeout

4. Describing Communication Behaviour (3)

4.1. Criss-Crossing of Actions: Proactive Quoting (1).In this section we treat behaviours
which involvecriss-crossing between two participants, s#@yandB, one message goes froito B
and another fronB to A in parallel, one of which often having a stronger prioritye\lse use-cases
contributed by Gary Brown1[3] and Nickolas Kavanzta§).

Brown'’s use-case is a (simplified form of) one of the typicdéraction patterns in Investment
Bank and other businesses. Its narrative description iemely short, but the induced behaviour is
non-trivial to describe. We assume two participadtandB.

(1) Initially, A sends a request for quoteBo

15

A — B InitA2B(A2Bch .

A — B: A2Bch(RequestQuote).

B — A A2Bch(Quote, Yquot e, Xquote) -
Pquot eAccepted = £f @ B.

{
Ta. A — B: A2Bch(AcceptQuote). PyuoteAcceppted =1t @B. O
par
rec X. {
lett =timer(5)@B in
when (expired(t) @B)
if (Pquot eAccepted = ££@B) { B — A : A2Bch(RefreshQuote, Yquote, Xquote) - X }
}

FIGURE 12. A Proactive Quoting with a Criss-Cross (global)

(2) ThenB sends an initial quote t& as a response.
(3) ThenB will enter a loop, sending pro-actively a new quote in a “RefrQuote”-message
every 5 seconds unti\'s “AcceptQuote”-message arrivesBit

Thus the “AcceptQuote”-message frais in a race condition with a “RefreshQuote”-message from
B. Once the quote is acceptdishould terminate its loop. We leave unspecified in the use-baw
a quote is calculated, howvdecides to accept a quote, and hwotifies which quoteé\ is agreeing
on (refinements are easy).

The repeated actions at each time interval can be cleanleleddusing the predicate-based
invocation mechanisnbp)], which is also useful for other purposes.

when (p@A) {1}
wherepis a predicate (an expression of a boolean type). It reads:

The interactionl does not start until the predicagebecomes true: when it
becomes so, thenwill be engaged in.

Its precise semantics is either (1) whenepdsecomes true, should start; or (2) whep becomes
true,| can start, but this “event” can be missed in which dasgy not start. The behaviour in (1)
tends to become more deterministic, while (2) is realiséirleugh busy-waiting without additional
synchronisation mechanism.

We use this construct to describe the use-case. We firshiaddy illustrate the underlying idea
(suggested by1[3)): after the initial quote has arrived & we consider there are two independent
threads of interactions, in bothandB.

e In one,A may decide to send the “AcceptQuote”-message; whezceives itB will set
its local variablepguot eaccept ed t0 “truth” (which should be initially “false”).

e In another,A is always ready to receive “RefreshQuote”-message (witleva quote
value); On the other handas far as the local variable quot eaccept ed iS falsg B will
repeatedly send, at each 5 seconds, a fresh quote.

Note the variablepguot eccepted IS Used for communication between two threads8in When B
ceases to send new quot@salso cease to react to new quotes fiBnthus both reaching a quiescent
state. The description in the global formalism (augmentét Ywhen”-construct) follows.

16

A| InitA2B (A2Bch, B2Ach.
A2Bch(RequestQuote).
B2Ach(Quote, Xquote) -
{1.A2Bch{AcceptQuote, Xquote) .0 par rec X.{ B2AchRefreshQuote, Xquote) - X } }

B[InitA2B (A2Bch, B2Ach.
A2BchRequestQuote).
B2Ach(RefreshQuote, Yquote) -
Pquot eAcceppted :=ff.

A2Bch(AcceptQuote). PquoteAcceppted =1t . O
par
rec X.{
lett =timer(5) in when (expired(t))
{ if (Pquoteaccepted = £f) { B2Ach(RefreshQuote, Yquote) - X } }

FIGURE 13. A Proactive Quoting with a Criss-Cross (local)

Above, “Ta” is the standara-action local toA, indicating passage of an unspecified duration of time.
Thus as a whole

Ta. A — B A2Bch{AcceptQuote). Pquot eAcceppted :=tt @B. 0,

indicates that the sending of “AcceptQuote” (with a quotkigaat the time) may take place after
some duration of time, and whdreceives this messagB,will assign “truth” to its local variable
Pquot eAcceppt ed- ONe may as well refine the above part as follows, using theehWisonstruct.

when (satisfied) @A)
{ A—B: AZBCh<Accethuote> . quOt eAcceppt ed =1t @B 0 }

wheresatisfied is an unspecified predicate local Ap indicating the satisfaction &k w.r.t., say,
the current quote value.

In the second thread is engaged in a loop: the timeexpires at each 5 seconds and, when
expires(t) (which is a predicate rather than exception) becomes theepbdy of “when” is exe-
cuted. If pguot eacceppt ed IS false, it sends a quote and re-enters the l100pgudt eacceppt ed iS true, it
terminates the loop. The interaction

B — A : A2Bch(RefreshQuote, Yquot e, Xquot e

not only indicatesB sends a “RefreshQuote”-message, but &se ready to receive it and sets the
communicated quote into its variablguot e.

The protocol description invites us to diverse forms of refirent. For example, we may con-
sider the predicateatisfied is a boolean variable set aftArreceives a new quote (in the second
thread). We leave exploration of such refinements to thearead
Next we consider the local version of Figure 12, using the-goidt counterpart of the “when”-
construct. This is given in Figure 13. One may compare thegmted behaviours with those in
Figure 12. The “when” construct is usedBywith the same semantics as in the global calculus.

In the local description of's behaviour, the projection makes clear that, in one ofis t
threadsA repeatedly gets ready to receive “RefreshQuote”-mesdagiesB, while, independently,
may move to the stage where it sends an “AcceptQuote’-medse. Thus, when a criss-cross
of these messages take plagewill simply receives the message froBiwhile sending its own

17

A — B : InitA2B(A2Bch, B2Ach.
A — B: A2Bch{RequestQuote).
B — A:B2Ach(Quote, quot e, Xqiate) -
rec X.{
lett =timer(5)@B in
A — B : A2Bch{AcceptQuote)timer(t).0
catch(timeoutt))
B — A :B2Ach(RefreshQuote, newQuoteXquote) - X }

FIGURE 14. A Proactive Quoting with a Criss-Cross (global, with
atomic interaction)

message. As noted before, we may as well refilsebehaviour, for example in its transition to the
quote acceptance state.

In the local description 0B, the first thread does not start from thaction (which isA’s local
action) but starts from the reception of “QuoteAcceptantessage fromh. The second thread is
engaged with the timeout and loop using the “when” constugihg the variablquot eAccept ed-

The local descriptions of the proactive quoting protocoFigure 13 are directly related with
its global description in Figure 12 and vice versa, up to thattment of criss-crossing. In particular,
it is not hard to imagine how we can project the descriptiofrigure 12 to the one in Figure 13
following a simple principle. A natural question is whetivee can do theeversetranslation in a
general way: can we integrate the local descriptions inf€id3 to synthesize the global description
in Figure 12? What would be the general principle involveduch projection? Part of this question
will be answered in Part Il of the present paper.

4.2. Criss-Crossing of Actions: Proactive Quoting (2).In this subsection, we present an
alternative global description of the proactive quotingtpcol. Itis simple and understandable, even
though the description is only sound under a strong assomptiout the underlying communication
on mechanism. The description follows.

The description in Figure 12 is terse and understandableveMer its clarity has become possible
only by assuming a significant condition on the underlyingssaging semantics: each interaction
is atomic. This assumption becomes essentidl i B : A2Bch{AcceptQuote), which needs be
executed atomically: if not, it is possible thasends a\cceptQuote-message t8, but the time-out

in B is caughtB sendsRefreshQuote to A, andA should again send&cceptQuote-message again,
which is not the expected behaviour&f Rather it says thah — B : A2Bch{AcceptQuote) either
happens or not at all and moves to a timer, which is only rablésif this action is atomic. It may be
costly to realise such atomicity in general. At the same tithe description may suggest atomicity
of interaction can lead to terse specification of a compldxalmur.

Due to the assumption on atomicity and its interplay withetinit is hard to devise local de-
scriptions directly corresponding to Figure 14. Even if wipdate the same atomicity assumption
in local descriptions, it is hard to construct the projestamtoA: the problem is that the 'when’ loop
within A does not have an activity that it can observe to indicateBhas exited the loop. A possi-
ble approach to this would be to model a guard conditionAftm also include the 'quoteAccepted’
variable — but this guard condition would also have to inelutle aspect of duration, otherwise
(as a result of the "when’ blocking semantics) the guard atould simply block until the variable
‘quoteAccepted’ was set to true, and it would not receive afhthe quote refresh messages. Fur-
ther, if both participants are required to use the same gemndition, then it also assumes they have
synchronised clocks and evaluate the expressions at gxhetsame time.

18

RBC — STC : InitR2S(R2Sch.
RBC — STC: R2ScHCreatelrder).
STC — RBC: R2ScH0rderAck).
lett =timer(T)@RBC in
{STC — RBC: R2ScHP0OCompleted) timer(t).0}
catch timeout(t) {
RBC — STC: S2RabortAbort). {
STC — RBC: R2Sabor{ConfirmAbort).0
+
STC — RBC: R2SchPOConfirmation).0 }

FIGURE 15. A Global Description of T-Shirts Procurement

4.3. Criss-Crossing of Actions: A T-Shirts Procurement Praéocol (1). Next we treat Ka-
vanztas’s use-case9], which describes a protocol for purchase orders betweaakyrbig corpo-
ration (RBC) and a small T-shirts company (STC).

(1) RBC sends a purchase order (PO) to STC.

(2) STC acknowledges the PO and initiates a business prazéssidle the PO.

(3) After STC'sinternal processes regarding the PO are ¢eteq, STC sends “PO-Completed”
to RBC in order for RBC to complete its own business process.

(4) RBC can send a Cancel Order message to abort STC'’s bsigraess (which can criss-
cross with a PO completed message), any time before RBCvescttie PO Completed
message from STC

(5) If Cancel Order arrives at STC before PO Completed is sent STC, then STC aborts
its business process and acknowledges this to RBC with P@eled, in order for RBC
to abort its own business process. Otherwise, if STC haadreent PO Completed, it
ignores the Cancel Order because RBC has agreed it will He@®srwhen cancellations
are not sent out within an agreed-upon time-frame.

(6) If RBC has already sent the Cancel Order message andttieaeives the PO Completed
message, then instead of aborting, RBC completes it.

Figure 15 presents a global description of this protocol.

Above, RBC first initialises a session channel R2Sch thrdagR2S, then sends an order, which
STC acknowledges. RBC then starts a timer, i.e. the longast T it is willing to wait before
the PO confirmation arrives. The timer is frozen upon the P@ficoation. Alternatively if the
time-out occurs, it is handled by the catch part: RBC sendabemt message to STC, and either
STC acknowledges it or its PO-confirmation arrives. Note \aeehmade a timer explicit in this
description: we later show a description which does not oelyhe use of a timer.

An acute reader may observe that this description agaimessatomicity of communication,
as in the previous subsection, in the sense that: the egeaftan interactio — B : ch(0Op) means
the two things at the same timA:sends a message aBdhas received that message.

Next we give an end-point counterpart of the same descripiioFigure 16.

In STC's description, we use the following predicate-basrception mechanism. The syntax for
this exception handling is:

try {P} catch(p) {Q}

whose semantics is, informally: to execute the interacBamless the predicate (a boolean-valued
expression)p is satisfied (notg is treated as an event). In the latter ca@eyould be executed. This

19

RBC| InitR2S (R2Sch.
R2ScHCreatelrder).
S2RcH0rderAck).
lett =timer(T)in {

S2RcHPOCompleted)timer (t).0

catch timeout(t) {
S2Babor{Abort , true) .
S2Babor{ConfirmAbort).0
+
S2RcHPQConpl et ed) .0}]

STC[InitR2S(R2Sch.
R2ScHCreateOrder).
Xaport .= false.
S2RcH0rderAck).
try
{ 1.S2RcHP0OCompleted).0}
catch (ﬁXAbort)
{S2Babor{Conf i r mAbort).0
+
S2RcHPOCompleted) .0}
par
S2Babor{Abort , Xaport) .0 |

FIGURE 16. A Local Description of T-Shirts Procurement

construct is feasibly implemented if the “catch” part is aweption such as timeout or explicitly
thrown exceptions. However its implementation becomesenmrolved if, as here, a predicate is
used for invocation since in that case a mechanism is nayessavatch the update of relevant
variables. Note this construct is similar to the “when” doust: the same underlying mechanism
can realise both. As an alternative, one may realise a sitmdhaviour using either a busy-waiting
or a “sleep” construct, though these alternatives may ndaitieful to intended semantics when we
use arbitrary predicates for invocation.
We illustrate the behaviour of RBC and STC in this end-poegdatiption. First, RBC's local

behaviour is as follows.

e The first three actions (session init, order request andaeladgement) are obviously
implemented,;

e RBC sets a timer and waits for T time-units to receive the Pdiooation from STC;

e [f the time-out is triggered, RBC will send an abort to STCd dhen wait for the abort
confirmation or for the PO confirmation.

The local behaviour of STC may be illustrated thus.

e As in the RBC part, the first three actions need no descriptart the fact that STC
has a variable for checking whether RBC has requested ah @boot. This variable is
initialised to false;

e Atthis point STC checks the abort variable, and if it is noktit decides to perform a tau
action and then send the PO confirmation.

o if the abort variable is true it then confirms the abort;

e in parallel with the described thread, there is anotheratthnghich just waits for an abort
message from RBC.

20

RBC — STC : InitR2S(R2Sch.
RBC — STC: R2ScHCreateOrder).
STC — RBC: R2ScH0rderAck).
{
Xaport Request ed@ST C:= false.
IsTC:
if ﬂXAbortRequested@bs-rc{
STC — RBC: R2ScHP0OConfirmation).
Xconf Arri ved@RBC:= true .0}
else
STC — RBC: R2Sabor{ConfirmAbort).0
}
par
{
Xconf Arri ved@RBC .= false.
TRBC-
if —Xconf Arri ved @RBC{
RBC — STC: S2RabortAbort).
Xabor t Request ed .= true .0}

FIGURE 17. A Global Description of T-Shirts Procurement without
Timer

Note the end-point description makes it explicit how timgewone and how criss-crossing occurs in
terms of two distributed end-point behaviours. We beligvfaithfully realises the global behaviour
described in Figure 15 under the assumption of atomicitytractions: at the same time, one may
observe that the given end-point description doesautomatically get extracted from the global
description. In fact, as far as the initial protocol destoip goes, the local description arguably
realises a correct behaviour even if we do not stipulate theni@ity assumption for communication
actions (it is notable that CDL5pP] does not stipulate such atomicity).

4.4. Criss-Crossing of Actions: A T-Shirts Procurement Prdocol (2). The descriptions so
far depend on the explicit use of timer and exception (tintewtnich a timer engenders. However
the nondeterminism and criss-crossing of message exchdngmselves may not be directly related
with local use of timers. Indeed, a description of the oJezathange of interactions is possible
without using timers, as we shall discuss below.

The protocol uses two (local) variables, AbortRequestesdilat and ConfArrived at RBC, both
initialised to be false. The timing of update of these vdgalis the key underlying idea of this
protocol. The protocol description follows.

Let us offer an informal illustration of the protocol.
e The initial three interactions remain the same as befoee, sending a purchase order
from RBC to STC after a session initiation, then an acknogggdent from STC to RBC.

21

e At this stage the interactions are divided into the paraiéehposition of two behaviours.
In one thread of interaction, we have:
(1) STC will, at some point, check AbortRequested is true (RBC's abort request has
arrived) or false (i.e. RBC'’s abort request has not arrived)
(2) If AbortRequested is false, then STC will send a PO cor#tiom message. When
RBC receives it, it will set its ConfArrived to be true, and Goves to the com-
pletion of PO processing.
(3) If AbortRequested is true, then STC will send a AbortConéid message. RBC
receives it, and in both sites the PO process aborts.
In another thread of interaction, we have:
(1) Atsome point RBC will check ConfArrived.
(2) Ifit is false (i.e. a PO confirmation has not arrived), rtreends AbortRequest-
message to STC.
(3) Ifitis true (i.e. a PO confirmation has arrived), then RBiGves to the completion
of PO processing.
In Figure 17,1s1c (resp. Tree) indicates ar-action in STC (resp. in RBC), which may take an
unspecified amount of time. We can check that this protoce¢meoves to:
e The situation where STC sends a PO confirmation but an RBGsafsince, for an RBC
to abort, it needs to obtain AbortConfirm message from STC).
e The situation where RBC receives both a PO-confirmation abdri®€onfirm (for the
same reason).
Note however it is possible STC may receive, in one threadyrtequest message at titnleut, for
some reason, this has not been propagated to anther thréagkjrso that, at timé+tg, STC sends
a PO-confirmation message to RBC. However this does notaxdiots the initial specification (we
also believe this is consistent with the standard businesgention).
The end-point projection of this example is not to hard, Wwhice leave to the reader. We
also note Kavanzta®9] presents a different description in CDL using the “whenhswuct with
distributed predicates.

4.5. Further Note. In this section we have explored various ways to describeluginess
protocols (though the presented ones are far from the onjsw@describe them). The purpose of
these formal representations of business protocols inglweilcis not only to analyse the behaviours
of these protocols themselves and to reason about them|doutoaunderstand the correspondence
between various constructs and their expressiveness. Byga precise operational semantics, we
can discuss diverse aspects of the constructs needed tseepra large class of communication
behaviours with precision. Further analyses of these ahner@omplex business protocols in these
formalisms would be an important and stimulating futureseesh topic.

22

feature CDL formalism
session channels located at input no restriction
session initiation implicit explicit
general co-relation yes by adding “polyadic sync”
typing by-name (informal) by-structure (formal)
type checking no yes
local exception none yes
repetition loop recursion
sequencing imperative prefix
predicate-based invocation yes by adding “when”
EPP implemented proved
global variable lookup yes no
global completion yes no
TABLE 1. Correspondence and Differences

5. Correspondence with CDL

In this section, we briefly outline relationship between C&d the global/local calculi we have
used in the previous sections. The correspondence/diffeseare summarised in Table 1.
Some comments:

Channels are one of the fundamental elements in commumriebtised languages as well
as in security engineering, arising in diverse forms (suglsackets, remote object IDs,
and URLs). Even though an informal global description maymention channels (this is
because the names of participants play the role of chantiets) become essential when
exception and channel passing are involved. In fact, indstahdistributed programming,
we may use multiple channels (often in the shape of trangponections) in one unit of
conversation.

CDL channels are located at the inputting side, represgntia ports where the sender
writes to. Formalisms are more general, using channelsfboihput and for output.
Concerning session initiation, this is done implicitly idC. In our calculi, we place the
explicit session initiation which makes the underlying g®nal and type structure more
explicit and more amenable to analyses. This does not prergeinom using the calculus
to represent practical business protocols since we maydéba session initiation and
the subsequent action to be combined into a single messagelementation.
Co-relation is one of the significant features of CDL. Caatigln can be considered as a
way to collectively treat multiple sessions as one cont&nsainit. Though we have not
been treated in this work, this feature can be cleanly remtesl in formal calculi. One
method is to use the so-called polyadic synchronisation.

CDL does not have a proper notion of type checking nor typererice. However it is
equipped with such notions as relationship, roles and gpaints, whose specifications
are related with each other through XML schemas. These rmtstplay an important
role as part of documentation. These data will be usable @sia bf typing, using the
so-called by-name approach (as found in Java).

In the current CDL specification, type checking (i.e. vdrifyif a particular choreogra-
phy is well typed) is not part of the specification. Such typeaking may as well be
partly complemented by type inference (i.e. elaboratinyped phrases with appropriate
types). These verifications can be done formally in the d¢acu.e. we can provide an
algorithm which, given an interactidnand a typd, checks whether thieis a good type
for I. Transporting this facility into a CDL development tool idke one of the significant
future topics.

23

As we saw above, exception are indispensable for managing mgeresting real applica-
tion situations. One thing missing in WS-CDL would be thdigbof handling exceptions
locally, with a standard local scoping rule. This topic magerve further consideration.
Repetition of instructions is usually dealt with while l@gn the calculus we use recur-
sion, another mechanism which can faithfully emulate thadard loop operation as well
as many forms of recursive calls. They also enjoy many theadefeatures. This does
not mean it is better to replace loops with recursion: wheoog lbehaviour is intended,
writing it with a loop often leads to a more understandabltagpam.

Sequencing of interactions can be treated in two differemgsyi.e. the way it is done
in CDL and the way it is done imecalculus. In CDL, a standard imperative language
construct “;” is adopted. In our formalisms, we are using siaple prefixing opera-
tor. Superficially, the latter construct is less powerfudriithe former, mainly because it
assumes only very simple operations are allowed before.th&h the contrary, when
using “;” we can combine complex expressions such as thoswioed by the parallel
operator. Again there is a precise embedding of “;” into trefiging in combination with
other constructs, so we lose no generality in using “.” whilewing easier analysis.
CDL is equipped with the predicate-based invocation meisharffor which we used
the construcwvhen). This mechanism is powerful for various specificationd, ibalso
demands a heavy implementation mechanism. Exploratioas#where this construct
becomes indispensable would become important for undaetistg its status in structured
concurrent programming.

Various globalised features of CDL are incorporated beedbsy often naturally arise
in business protocols. Their semantic content however noayp@ precisely understood.
Note globalised behaviour has to be, in effect, realisechtsractions among distributed
peers. Therefore, at least at the level of formalisms, theerstanding of how a certain
global construct may be realised by interactions is a présig for their proper inclu-
sion in formalisms. Precise appreciation of what highdl@tebal abstraction would be
suitable for describing communication-centred softwagbadviour, and how they relate
to their local (communication-based) realisation, is apontant topic for future study.

24

Part 2

A Formal Theory of Structured Global
Programming

6. Introduction to Part 2

Part Il develops a theory afnd-point projection (EPR)Wwhich gives an exact condition and
framework by which we can relate the global description ahownication-centric software to its
local description. The theory is intended to offer one ofd¢katral formal underpinnings of W3C'’s
web service choreography description language, WS-C31L [The development of the theory has
benefitted greatly from the dialogue between the invitedraists of W3C WS-CDL Working Group
and WG’s members: in fact, without this dialogue, this tlygoay not have been developed, at least
at this moment and in its current shape.

The presented theory may be considered as offering a forotitiste for designing, imple-
menting and using distributed applications written in WBtCand related languages, by establish-
ing principles by which applications’ global descriptiondatheir local description are naturally and
precisely related. In particular, the theory may be usaiblesombination with results from other
research threads, as a mathematical underpinning of watoals and infrastructural support for web
services, including those for static and dynamic verifmatiOne such effort is underway, using an
open-source reference implementation of WS-CBQ [

In the rest of Part 2, Section 7 informally motivates the idéand-point projection and its
theory, and summarises key technical results and theimergig relevance. Sections 8, 9 and
10 formally introduce the global calculus, centring on iyma@mic semantics (reduction) and static
semantics (type disciplines). Section 11 and 12 does the amthe local calculus. Sections 13, 14
and 15 introduces key descriptive principles for the glaiztulus which form a basis of the theory.
Section 16 establishes the main results of the paper, the eaarespondence in type structures and
dynamics between descriptions in the global calculus apgktin the local one, through an end-point
projection. Section 17 discusses extensions. Section 4ifigues the presented ideas in a historical
context, compares the present work with existing work, amuttudes with further topics. Some of
the auxiliary proofs and definitions are left to Appendix.

27

7. Informal Preview

7.1. What is end-point projection? End-point projection, or EPP for short, is a concept fre-
quently discussed throughout the development of CDL in tlRCVWS-CDL working group. Its
basic idea is simple, and may be summarised as follows.

Let’s write down a communication-centred concurrent peogr(in this case a
business protocol) globally, then project it to each enihipso that we can ob-
tain a local description which realises the original glokdéscription through
their interaction.

As a simple example, consider an interaction:
(11) Buyer — Seller : B2SchQuoteAccept, 100, x).0

which is an interaction between a Buyer and a Seller, the éoroommunicating it accepts
the quote with price 100 pounds (or dollars or whatever awyeyou like). This simple global
description is projected onto two end-point (local) dgstioins:

(12) Buyer[B2Sch{100).0]
and
(13) Seller[B2Sctfx).0]

Here description of an “interaction” in (11) (in which botargling and receiving of information are
one thing) is decomposed into its local communication aetitin which a sending action of (12)
and a receiving action of (13) are separate). We can sedftBatyer does the specified sending and
Seller the receiving, then precisely the interaction asi§ige in (11) takes place. So we can regard
(12) and (13) as how local agents should behave if we wisiseetile global interaction as described
in (11). As such, they can be regarded as local programs imgiéng original global description,
or alternatively as local monitors which constrain the hébar of each agent.

7.2. Why EPP matters. Why does EPP matter? First, without EPP, we do not have aidear
how a global description can be executed, and, theref@epinputational meaning is not clear: a
central idea of web services, or in general communicatem+ed programs and services, is that
independently running concurrent agents achieve their application goals thrahgh communi-
cation with each other. Thus a global description shoulddesiclered as describing behaviour of
distributed communicating processes: the latter is theningaof the former. In this sense, it is
only when a uniform notion of EPP is given that the computatia@ontent of global descriptions is
determined.

Second and relatedly, EPP is an essential basis for divegieezring applications of global
descriptions. Once we have a clear notion of EPP, it offersgéch end-point, what local behaviour
a given global description specifies: if we wish to monitoretiter an independently developed
end-point program behaves in a way specified by a global ibtiser, then we can compare the
former with the EPP of the latter. Or if we wish to develop agyeon referring to a given global
description of their interactions, we can start from the ERRhe latter: and after developing a
fully specified program, or even during the development, agmammer/designer working on each
endpoint program can check whether it conforms to the oaiggiobal description with respect
to its communication behaviour (such validation, which wayneall conformance validatignwill
be particularly useful in collaborative program developit)e Or we can even develop a global
description language which can specify full algorithmidails specification at each-end point in
which case the result of performaing an EPP on a detailedaffgecification onto all the end-points
offers directly executable distributed programs whoseabiur is by definition conformant to the
original global specification.

IHere “independence” indicates primarily about synchratiis boundaries, but it can also indicate protec-
tion domain (security) boundaries.

28

Thirdly, EPP offer a central underpinning for the theoraticnderstanding of the structures of
global description and their use. Indeed, EPP opens thatgdssonduit between theories of pro-
cesses and web service engineering, by relating the glasairigtion to the equivalent description
in the shape of communicating processes. The establistretection enables application of alge-
bras, logics and types of theories of process calculi in tiesgnt engineering context. It also (as
our subsequent inquiries make clear) leads to a deep stalietoalysis of global descriptions. Web
service engineering demands theoretical foundationsuseci is about interoperability among dis-
parate agents inhabiting distinct protection domainsifoa more wordily term, organisations with
possibly conflicting interests and complex trust relatiops). In such a context, different organ-
isations need a clear shared understanding on how they antéetact with each other in a given
business protocol. As an example, consider a businesscptattich is about transaction of stocks
and which need be bound by regulations. We need a cleariaraisrto whether each end-point
(organisation) is acting conforming to the protocol. Intfasonformance of the protocol itself to a
regulation should initially be clarified, for which we nedéar engineering understanding preferably
backed up by a theoretical basis. We expect many key elemétieories of processes will offer
critical engineering tools in this context.

7.3. Criteria for EPP. An ad-hoc EPP framework may not work: in fact, it never workhis
is for simple reasons. First, we wish to implement EPP as gorighm which can once and for all
map a large class of global descriptions to their local ceparts. Thus we need a general way to
relate global descriptions to local ones. Second, in redaglobal description to local description,
we wish to avoid the situation where generated local deseniby different notions of EPP are not
compatible with each other. This is especially true whencdal description serves ageference
descriptionof software infrastructure in an organisation or a sociahdm, used as a key reference
for various business decisions, interoperability andastiructural development (this is in fact one of
the stated goals of WS-CDI5]]).

So we need a general framework for EPP, which can uniformlp engeneral class of global
descriptions onto their end-point counterparts. But howwa know a given EPP is correctly pro-
jecting a global description to a local description? An mfial, but important, engineering criteria
is that the resulting local descriptions hawuitively a clear and direct connection to the original
global description. That is, a designer who specifies soévieehaviour by a global description
should not have surprises when the real computation issehlly communications among projected
local processes. From the viewpoint of interoperabilitysialso important that we have a general
and uniform scheme which can be applied to a large class bagtiescriptions (note that, assuming
we use a public standard for global descriptions, if we hageficiently general and satisfactory
EPP mapping, this gives us a firm basis for interoperabiliyjart from these two informal criteria,
the following three are natural formal criteria by which wenameasure the effectiveness of an EPP
scheme (which are in fact closely related to the two inforomeeria we just noted).

e Mapping preserves types and other well-formedness comditi
e The projected local description implements all behavicexpected from the original
global description. Concretely, actions expected from @bal description should be
faithfully realised by communication among a collectionppbjected end-points. This
property may be calledompleteness of ERP
e In the reverse direction, locally projected communicatprgcesses should not exhibit
observable behaviour not prescribed in global descripisrar as its predefined interface
goes? Concretely, communications among projected peers shalgmbeyond actions
stipulated in the original global description. This may ladled soundness of EPP.
For these criteria (especially the latter two) to make sengeractice, we should have a precise
way to say, among others, what course of actions (their kards$ structures) are stipulated in a
global description, and what course of interactions (theids and structures) are expected from

2Local programs may as well need to engage in actions out$iti@se prescribed even just for implement-
ing those prescribed actions.

29

a collection from local descriptions. To do so, we can folldwe standard framework in process
algebras 8, 22, 32, 3 and programming language semanti2g,[41, 53, defining formal syntax,
well-formedness (type disciplines) and evolution of bébar (dynamic semantics). By mathemati-
cally defining these ideas, we can now formulate correctogtsia without ambiguity as well as a
means to prove (or refute) whether a framework of an EPPfieatithe given criteria (of course the
use of formal definitions of semantics of process languagesegond its use in end-point projec-
tions, including a reference for concrete implementat&fgrmal basis for developing diverse forms
of verification technologies, and deeper inquiries intohmatatical properties of these descriptive
frameworks themselves, cB)).

The aim of the rest of the present note is nothing but carrgingthe program just outlined:
formalising central notions of global/local languagedheit distilled form; presenting formal criteria
for correctness of EPP; and study a general framework of BElRding formal arguments for its
correctness, including three natural descriptive prilespunder which the presented EPP results in
sound and complete local descriptions. In particular wél ghesent:

e Formal definition of static and dynamic semantics of the gla@mnd local calculi, which
distills respective descriptive paradigms/languageati(ssemantics specifies a type dis-
cipline for description, dynamic semantics specifies homguotation proceeds in a given
description). Type disciplines in respective formalisrosas a basis of the whole techni-
cal development in the paper.

e Atheory of end-point projection, which maps a global dgst@i to local description, as
well as offering a means to examine its properties. We firss@nt three basic principles
for global descriptions which defines a notion of “well-fagdness” of description. Then
we introduce a simple inductive algorithm which maps eacl-feemed global descrip-
tion onto a collection of local descriptions (one for eack-@oint), and present formal
arguments that this map is both sound and complete, witleotsp static and dynamic
semantics of respective formalisms.

The theoretical development focusses on key elements béblocal formalisms without such fea-
tures as timeout and exception. We believe there are nomasuntable technical obstacles to extend
the present theory to these additional features.

30

8. Global Calculus (1): Syntax

In this section and the next, we introduce the syntax andmjeiatatic semantics of the global
calculus. Thelynamic semanticspecifies an abstract notion of “computation” underlyingirfal-
ism. In the case of Turing Machine, this is a move of a head aad/write of each slot of a tape. In
the case of tha-calculus, this is an application of a lambda term to an agunand a subsequent
substitution (for examplgAx. fx)3 — f3 indicates that, when the functighx. fx) is applied to an
argument 3, the result is another applicati@). In the case of a global calculus, this is represented
as a transition from a global description to another glolelodiption, carrying out each step of in-
teraction (exchange of a message). Since each participaytomin its own local variables, such
transition can also involve collection of local variabldglee participants involved.

From an engineering viewpoint, the dynamic semantics pimgxch mathematical notion which
designers, implementors and users can refer to when thédytwidiscuss about dynamic behaviour
of description with rigour. For example, this would allow tes state with precision whether an
implemented program conforms to the description or not. dymamic semantics is defined using
an intuitive notation,

(0,|) — (OJ|)
which says a global descriptidnin a stateo (which is the collection of all local states of the par-
ticipants) will be changed intt/ in a new configuratior’. This idea comes from the small-step
semantics given to imperative languages 4&i,53).

The description of interactions in the global calculus cesion a notion ofessionin which
two interacting parties first establish a private connectimd do a series of interactions through
that private connection, possibly interleaved with othesssons. More concretely, processes first
exchange fresh session channels for a newly created setfgaruse them for interactions belonging
to the session (this is equivalent to the more implicit frarok where identity tokens in message
content are used for signifying a session). This idea haswalaassociation with a simple type
discipline, where we represent a structured sequence erfictions between two parties as an type.
Here “types” mean syntactic annotation on descriptiongitgractions: this annotation describes an
abstract notion of interface of a service (or a shared sert@nnel), and is inferred by typing rules
for each description following its syntactic structure r Egample, consider an interaction:

Buyer — Seller : s(RequestQuote, productNamex).
Seller — Buyer : s{(ReplyQuote, productPrice y)

In (14), a Buyer requests a quote for a product, specifyirgptoduct name, through a session
channels: then, through the same channel, a Seller replies with tle¢egualue (one may consider
chto be a socket connection). This interactiors ain be abstracted by the following session type:

(15) s 1 RequestQuote(St ri ng). s | ReplyQuote(l nt)

The session type in (15) abstracts a sequence of actiorsrped atch, specifying the following
abstract behaviour:

First sends (‘") a string with operation nameRequestQuote, then receives

(* |™) an integer with operation nam®&eplyQuote.

Note this abstraction is given from the Buyer’s viewpoine wan equally present the abstraction for
the Seller’s action:

(16) s | RequestQuote(St ri ng). s T ReplyQuote(l nt)

which simply reverses the direction of information flows. tBlthat, in this way, there is a natural
notion ofduality associated with session types.

Section 3 and Section 4 complete the presentation of thebtaliculus. The first introduces the
formal syntax of the global calculus, with many illustraitto In Section 4 we present the dynamic
semantics of the calculus, followed by its static semantite then show a basic relationship be-
tween the dynamic semantics and the static semantics: wbemputation happens in a well-typed
description, the result is always well-typed again.

(14)

31

8.1. Formal Syntax. The formal syntax of the global calculus is given by the staddBNF.
Below symbold, 1’, ... denotetermsof the global calculus, also callédteractions Terms describe
a course of information exchange among two ore more parti®s & global viewpoint.

I := A—B:ch(v$).l (init)
|A—B:s(op, e V).l (com)
| x@A:=e.l (assign)
| if e@A then |1 else |2 (ifthenelse)
11412 (sum)
[11]12 (par)
[(vs) I (new)
| XA (recVar)
| rec XA (rec)
|0 (inaction)

The grammar above uses the following symtfbls.

e a b c.ch,... range over a collectio@h of service channel&lso calledsession initiating
channel3. They may be considered as shared channels of web services.

e s,9,...range over a collectioss of session channelSession channels designate commu-
nication channels freshly generated for each session. ddrepe implemented in various
ways: in TCP, the same concept is realised by so-caleahection(also calledsessiohn
In web services, they are realised by sending freshly gésebidentity information as
part of messages.

e A B,C,... range over a collectior? of participants Participants are those who are en-
gaged in communications with others, each equipped witbwts local state. Each par-
ticipant may have more than one threads of interactiongusinitiple channels.

e XY,z ... range over a collection afariables which are close to variables in the traditional
programming languages such as Pascal and C, in that theertds updatable.

e X,Y,Z,...range over a collection aérm variableswhich are used for representing recur-
rence (loop) in combination with recursigec X.I. Note term variables occur annotated
with participants.

e e¢€,...range oveexpressionsgiven by the grammar:

e = x|v| f(e,...,&).
where f ranges over an appropriate set of function symbols (inoiditandard arith-

metic/boolean operators). Abowew,... range over atomic values such as natural num-
bers and booleans.

Each construct in the above grammar is illustrated in the siglisection.

8.2. lllustration of Syntax. The initial two constructs represent communications.tFirs
A—B:b(vs).l
indicates thaf\ invokes a service channightB and initiating a new session that will use fresh session
channelss,followed by interactiorl. Subsequent communicationslibelonging to this session are

done througts{l can have other communications belonging to different ses$i In the main part
of the present study we shall assumandB are distinct’ As §should be local to the session (i.e.

3As is standard, we assume there is an unbounded supply micdisymbols in each syntactic category.

“This is a natural constraint if we wish to describe intertiggrants interactions, which are often the only
focus of many business protocols. As we shall discuss atrtti@gthe present paper (cf. §17.2), the theoretical
framework of the present study works intact when we allowaigarticipant interactions.

32

unknown outside), we set eashe §to be bound irl. Second,
A—B:s(op, e y)

expresses the sending actiondwhose message consists of a selected opesatarith the receiver
B. The value of the expressi@{which can only use variables locatedis assigned to the variable
y (which must be located &). Third, another primitive operation &ssignmentwhich is the typical
basic operation in imperative languages.

X@A:=e.l.

The assignment is a local operation at the specified paatitif\ above), where a variable atis
updated with the result of evaluatimgalso located af.
We can use conditional to branch the course of actions:

if e@A then |1 else I

which will evaluatee once and, if it evaluates to true, the branghvill be executed, else brandh.
Note the conditiore is located atA. Or, instead of explicitly selecting one of the branches,cae
choose one nondeterministically:
I1+12
which either behaves dsg or asl,. The summation operater is commutative and associative, so
that we often writex;l; for the n-fold sum of interactions.
We can also launch two threads of interactions in parallel:

l]l2
denotes the parallel composition. However, unlike the ddesh process calculi, there is no com-
munication betweemy andly: 11|l just means two independent threads of interactions. Amothe
construction:

(vs) I
is the restriction (or hiding) of a session channel, wh@® binds free occurrences sfin I. This
is used for designating newly created session channels wiession is initiatedv §) | stands for
a sequence of restrictions. Since restriction is only adalbdn an outermost initialisation prefix
reduces, it is natural to stipulate:

CONVENTION 1. Henceforth we only consider terms in which restrictioeser occur under
prefixes (initiation, communication and assignment) nothey occur in a summand of a summation.

Interaction which can be repeated unboundedly is realigectursion. We start from a re-
cursion variablex” which has an annotation of a participant name (this anrtasi later used in
end-point projection: in brief, it indicates the princigadrticipant who determines whether to recur
or not). Then the term

rec XA
is the standard recursion construct, wheze X2 is calledrecursor, with X binding its free occur-
rences inl. We assume that whenewéroccurs free il of rec X1, X should always be annotated
with A (the type discipline we present later automatically gutgas this property). This annotation
plays an essential role in our typing later. However, whey tire irrelevant (especially in examples),
we often omit these annotations. Finally,

0

is the inaction, representing the lack of actions (it may dres@ered empty parallel composition or
the empty/inactive choreography).

For expressions, we assume variables, first-order atorhiesauch as integers, and first-order
operators such as arithmetic and boolean operations. Wetoclude channels and session chan-
nels as expressions for the present inquiry (cf. Section 18)

33

8.3. Examples.We illustrate the syntax through simple examples. Thesenples will be
used throughout the paper as running examples.

ExAMPLE 1. (Syntax, 1) The following example is from Part I.

{Buyer — Seller : B2ScKQuoteAccept, 100, x).11}
a7) +
{Buyer — Seller : B2ScQuoteReject, XaportNo,) - 12}

This example, as others, uses easy-to-read strings fonellaperator/variable name&uyer and
Seller are participants (which we writd B, ... in the formal syntax)B2Schis a session channel
name (which we writes,s, ... in the grammar); an@uoteAccept and QuoteReject are operation
names (which arep,op,... in the grammar). Thus, as a whole, (17) can be read as follows:

Through a session chanr&2Sch, Buyer selects one of the two options offered

by SellerQuoteAccept and QuoteReject. If the first option is selected, Buyer

sends the quote “100” which will be stored in x by Seller andgareds tol.

In the other case, Seller sends the abort number stored indthable X\portNo

which will be stored in y by the Seller and proceedsto |
Note the sumt is informally interpreted agternal sumfor Buyer (i.e. Buyer initiates this choice)
and asexternal sunfor Seller (i.e. Seller passively waits for one of the braeslfoperators) to be
chosen by the environment). This reading will become forseal when we consider its end-point
projection.

EXAMPLE 2. (Syntax, 2) A refinement of the description above follows.

if Xquote < 1000 @Buyer then

{ Buyer— Seller : B2Scl{QuoteAccept, 100,x, ., 1)1}
else

{ Buyer— Seller : B2ScHQuoteReject,XaportNo, s - 1)2 }

(18)

The description now specifies the “reason” why each brandhkisn. Notice the condition in the
conditional branchx < 1000, is explicitlylocated the description says this judgement takes place
atBuyer. Note also the description is still the external choice feli&: it is Buyer who selects one
of the options, which Seller waits for passively. The dgsttrn becomes self-contained by adding
an initial session invocation at a service channel,dgynd a request for a quote.

Buyer — Seller : ch(vB2SchS2Bcl).
Seller — Buyer : S2BciQuote, 100, y) ..
if Xguote <1000 @Buyer then
{ Buyer— Seller : B2ScH{QuoteAccept,100,x, ., 1)1}
else
{ Buyer— Seller : B2Scl{QuoteReject, xaportNo: Y, -)2 }

(19)

Initially Buyer invokes Seller to initiate a session withdwession channelB2SchandS2Bch The
rest is the same with the previous description.

ExAMPLE 3. (Syntax, 3) A session can have multiple session namesmomainication. This is
the standard practice in business protocols and othewiction-centric applications, and is essential
to have multiple parallel interactions inside a single e#ssAs an example, suppose that the buyer
wants to start a session at a chanaelin which it communicates acceptance of a quote on a session
nameOp and, in parallel, sends its address on a session mzatee This can be expressed as:

Buyer — Seller : ch(vOp,Data).

(20) { Buyer — Seller : Op(QuoteAccept, 100, X).0 |
Buyer — Seller : Data(QuoteAccept, Addressy).0
}
Here, two session channel®p and Data, are communicated at the time of session initiation at
channekh. Using these two channels, we reach

34

Examples of other constructs, such as recursion and hidiitihe given in later sections.

8.4. Comments on Syntax.The syntactic constructs we have presented above onlydeclu
the core part of the global calculus. This is to present fh@brend-point projection in a simplest
possible form. Below we discuss basic extensions and aliges of the syntax.

Channel/session passingValues may as well include channels and session channelsn Wh
session channels are passed around, we need to obey a tieganity constraint, as
discussed inZ4).

Variables and binding: We may as well use logical variables rather than imperatasé v
ables as receptors of communicated values, so that the cdsdmmunication is instan-
tiation of values rather than assignment. Even in this casenay include imperative
variables and its assignment, so that we can represent tioa rod local states cleanly.

Operators: Operatorsf(...) in expressions can become more complex. Among others,
WS-CDL includes operators which query current time and otla¢a, which can involve
reference to distributed states.

Mutual exclusion and atomicity: An important role is played by a mutual exclusion oper-
ator. The introduction of autex operation would incur issues of deadlock which can be
taken care of with a type system. Introducing mutual exclusiould also imply changing
the operational semantics as we would need to take care iables access, which may
be blocked by anutex. We may also introduce a transactional “atomic” statementhv
guarantees atomicity (noninterference) of a block fromalaead and writes by other
threads inside the same participant. This may be implerdemeng two-phrase lock-
ing or more optimistically using software transaction (feeer note interactional nature
of concerned descriptions makes rollbacks more subtleshmple imperative programs:
this issue parallels treatment of input/output in softwaemsactional memories studied
by Harris and others).

Exception, timeout and predicate-based invocation:Part | discusses how exception, time-
out and predicate-based invocation (writteimen e@A do |, which waits for the guareé
to become true and executesinlike the conditional) can become useful for representin
advanced forms of interactions.

Loop and other imperative constructs: The standard while operator can be easily encoded
in the formalism. The term:

while e@A do |

is encoded into:

rec X .if e@A then | = X else 0
wherel = X is a syntactic operation which attaches the variabte the leaves (ends) of
abstract syntax trees In Similarly the sequencingg 1’ can be encoded using sequencing
(there is a non-trivial interplay with the parallel congttu Considering these features
as explicit syntax will be useful when we need to directhatrpractical descriptive lan-
guages such as WS-CDL in an extension of the present theory.

35

9. Global Calculus (2): Reduction

9.1. Basic ideas of ReductionComputation in the global calculus is represented by a step-
by-step transition, each step consisting of:
(1) Execution of a primitive operation, which can be comneation, assignment and condi-
tional.
(2) Effects the execution above has on the local state ofvaivied participant.
To formalise this idea, we useanfigurationwhich is a pair of astate(a collection of the local
states of all participants involved) and an interactiorittem (o, 1). Formally astate ranged over
byo,d’,..., is a function fronVar x P to Val, i.e. a variable at each participant is assigned a value
in a store. We shall write@A to denote the portion af local to A, anda[y@A — V] to denote a
new state which is identical with except that’ (y, A) is equal tov. The dynamics is then defined in
the form:
(o, 1) = (d, 1"
which saysl in the configurationo performs one-step computation (which can be assignment, in
teraction, etc.) and becomé&swith the new configuratiom’. The relation— is calledreduction
or reduction relatior® For example, communication action will change both theestaid the term
shape:
(0, A—>B:s(send, 3, x).I) — (o[x@B~ 3|, 1)
which indicates:
“A sends a messagend and a value3, which is received by B an8lis as-
signed to a variable x at B as the result, with the residuatiattion I”.
Note communication action happens automatically, witifoat having sending and receiving ac-
tions separately and then having their synchronisatiosighsnent is treated similarly.

(0, x@B:=31) — (o[x@B~ 3|, 1)

Since an assignment is located, orlgt B is updated, and the next interactibis unfolded. Interac-
tion can involve choice, where one of the branches is chosadaterministically, i.e. we can have
either:

(o, (A—B:s(ok, 3, x).11)+ (A—B:s(no, 0, y).I2) — (o[x@B~ 3], 11)
or
(o, (A—B:s(ok, 3, x).11) + (A—B:s(no, 0, y).I2) — (oly@B+~ 0], I2)
will take place: both are legitimate reductions.
The conditional depends on how an expression evaluatesexaonple, ifx at A stores 0, then
we have
(o, if x@A=0then A—>B:s(ok, 3, X).I1else...) — (o[x@Bw~ 3|, I1)

But if x at A stores say 1, then the second branch will be selected.
For recursion, we expect a recurring behaviour. For exantpefollowing is a silly behaviour
which just continues to assign 1 to a variable. In this casenag as well have:

(o, rec XB.x@B:= 1.XB) — (o[x@B — 3], rec XB.x@B := 1.XB)
We shall realise such recurrence through the use of stailatules. Other constructs such as condi-

tionals and choice are standard.
In the following subsection, we illustrate the notion of uetion for each construct one by one.

5The term “reduction” originally came from the-calculus, where the sole purpose of computation is to

reduce to a final answer of calculation. While it is not effirguitable for interaction computation, we use the
term from convention and from our respect to the basic foignalvhich started semantics studies.

36

9.2. Reduction Rules.Reduction relation is defined by having one rule for each traoos
together with associated rules. First we have a rule forigesnitiating communication:

(o, A—>B:b(v§).l1)— (0,(v9I)
wheres’is a vector of one or more pairwise distinct session channglse rule says that, after
A communicates withB for session initiation with fresh session chanrglé andB shareslocally
(indicated by-binding), and the nextis unfolded. The state stays as it is since no communication
of values takes place.

We have already seen an example of reduction representmgnaaication through a session
channel: the formal rule follows.

(INIT)

oFe@Al v
(0, A=B:s(op, & x).1) — (c[x@B— V], I)
The premise of the rule above uses the judgement (callathiation judgemejt

oFe@A|vV

(Comm)

which says:
Expression e is evaluated into the value v in the A-portiathefstateo.
For example, ifo saysx at A stores 3, then we hawet (x+ x)@A | 6. Thus the expression to be
communicated is evaluated in teeurcepart of the state: and the value communicated is assigned
in thetargetpart of the state.
The formal rule for assignment is given as:
oFe@A|v
(0,x@A:=e.l) — (O[x@A— V],)
which updates the state at the participArgnd unfolds the next interaction.
The rules for conditional assumes, again using the evalugtidgement, that the conditional
expression evaluates to either(for truth) orff (for falsity). In the former:
o e@Al tt
(o, if e@Athen | else 112) — (0,11)
Symmetrically, when the condition evaluates to the falsity
ot e@A | ff
(o, if e@Athen | else 112) — (o, 1)
The rule for summation is standard:

(Sum)

(ASSIGN)

(IFTRUE)

(IFFALSE)

L@y (=h
For parallel composition, the rule is defined just by consigginterleaving of two components.
Thus we define:
(Par)— (O 1) = (9 1))
(0,11]12) = (0, 11 [12)

where we reduce the left-hand side. The symmetric rule isxdéfsimilarly (which is again sub-
sumed by the use of the structural rules we stipulate later).

For restriction we have:

(0,1)—(d', 1)
(0,(v§) 1) — (0, (v§) I')
which says restriction does not affect reduction. For rsicur, we use the standard unfolding rule.
I[rec XA.I /XA ol
(Rec) (O X1 /XA) — (o', 1)
(o, rec XAl) — (o', I)

(RES)

The rule says that:

37

If the unfolding ofrec XA.1, I [rec XA.1 /XA] (which substitutesec XA.1 for

each free X in 1) under o reduces to I with the resulting states’, then

rec XAl itself undero will reach (d/, 1').
Note the participant annotation plays no role in the rule.w&sshall discuss later, we can use the
structural rule instead to obtain essentially the sameatémtu Finally the inactior® does not have
any reduction. We also use the following rule, which says$ Wizen we reduce we take terms up to
a certain equality, following9, 33.
=1 (o,1)—(a, l") I =1"

(O’, |//) N (O'/, |///)
where the structural equality is defined by the following rules:

(STRUCT)

I = I I=q1")
I +1 = |
I +1o = lo+1q
(li+l2)+13 = I+ (l2+13)
o = I
iz = I2lp
(i3 = lgf(I2]l3)

((vs)l)llz = (v (lufla) (s¢fn(l2))

In the last rulefn(l) denotes the free names (including variables, channels esgios channels)
occurring inl. The relations is the least congruence on terms including the above equsativhile
the benefit of the use of structural rules in reduction rueliniited in the present context (in com-
parison with standard process calculi), considering texm = is often natural and adds clarity in
practice. We may also use a structural rule for recursion,

rec XA.1 = I[rec X1 /XA

to dispense wit{ REC) rule given above. Just dREC) does, this rule says the recursion and its
unfolding have identical behaviour. The resulting redurtis identical up to=. In Table 18 we
present all the rules.

9.3. Examples of Reduction.

ExAMPLE 4. (Reduction: Communication) Recall the following terrarfr Example 1

1) | def {Buyer — Seller : B2ScHQuoteAccept, 100, x).11} +
o = {Buyer — Seller : B2ScHQuoteReject, XaportNo, ¥) - 12}

We infer the reductions df. There is one reduction for each branch. For the first summaachote
o+ 100@Buyer | 100 and infer, using (GMMm):

(22) (0, lp) — (o[x@Seller — 100, 1)
Similarly we have the following reduction for the secondrmia. Assumeaporing Stores (say) 28
atBuyer in 0, henceo - Xaportno @Buyer || 28.
(23) (0, Op) — (o[y@Seller — 28], 1)
These are the all reductiohghas up to=.

ExamMpPLE 5. (Reduction: Conditional) We deduce reduction for thedittonal, using Exam-
ple 2. First we reproduce the term.

if Xquote < 1000 @Buyer then
def { Buyer— Seller : B2ScHQuoteAccept, 100, x).17 }
- else
{ Buyer— Seller : B2SchQuoteReject, XaportNo: ¥) 15 }

(24) 19

38

(0, A= B:bWv8.1)— (0,3 1)

oFe@A|v
(o, A—B:s(op, e X).1) — (o[x@B— V], I)

(INIT)

oFe@A|v
(0,x@A:=e.l) — (O[x@A— V],)

(Comm) (AsSIGN)

ok e@A | tt
(o, if e@Athen | else 112) — (o,11)

(0, 11) = (0, 1)

(IFTRUE) (0,11 12) — (0, 11| 12)

(PaR)

Ok e@A L ff - .
(AL SE) @A then T else 115) = (0, 1) M e it Sy (712
(ReS) (o, 1) = (d, 1" (ReC) (g, Irec XA1/XA) — (d, 1)

(0,(v8) 1) — (o', (v§ I')

I=1” (o, 1)=(a 1) 1'=I1"
(0—’ |//) — (0—/’ I///)

(o, rec XAl) — (a', 1)

(STRUCT)

FIGURE 18. Reduction Semantics of Global Calculus

If we assumes@Buyer(Xquot e) = 800 then we can infer:
o+ (800< 1000 @Buyer |} tt
(0, 1) — (o, Buyer — Seller : B2SchQuoteAccept, 100, x).1)
Further applying Comm) to the resulting configuration, we conclude:
(0,15) — (0, Buyer— Seller : B2ScHQuoteAccept, 100, X).17)
— (o[x@Seller — 100, I7)

which is the only reduction sequences frém I}) in this case. Assume on the other har@Buyer (Xquot e) =
1200. Then we have

(25) (IFTRUE)

o F (1200< 1000 @Buyer | f
(0, 1) — (o, Buyer — Seller : B2ScH{QuoteReject, XaportNo, ¥) - 15)

(26) (IFFALSE)

Hence in this case we have:
(0,15) — (0, Buyer— Seller : B2ScH{QuoteReject, XaportNo, ¥) - 15)
— (oly@Seller — 28], I)
which is again the only possible reduction sequence undesisbumption.
ExXAMPLE 6. (Reduction: Init, Par and Struct) We next consider Exandpl
Buyer — Seller : acc(vOp,Data) .

def

27) Jo = Buyer — Seller : Op{QuoteAccept, 100, x).0 |
Buyer — Seller : Data{QuoteAccept, Waddress, Y) -0
}
Call two components of the parallel compositidnandJ,. Then by(INIT) we obtain:
(28) (0, Jo) — (o, (vOp,Data) (J1 | 2))
By (Comm) we have:(o, Ji1) — (0[x@Seller — 100, 0), hence by(PAR) we arrive at:
(29) (0, J1|32) — (o[x@Seller — 100, 0|J2)

39

For the symmetric case, assum@Buyer(Waqdress) = adr (whereadr is a string standing for an
address) Then byComm) we have(o, J,) — (o[y@Seller — adr], 0), hence by(PAaR) we arrive
at:

(30) (0, 2 | 1) — (oly@Seller — adr], 0| J;)
NotingJ; | J» = J | J1, we can now apply(STRUCT)) to obtain:
(31) (0, 1|) — (oly@Seller — adr], J;)

Note we also simplified the resulting term. In summary, weehiawo sequences of reductions up to

(0, J) — (o, (vOp,Data)(J]Jz)) — (o[x@Seller — 100, (vData) J,) — (¢, 0)
and
(0, J) — (o, (vOp,Data) (J1|J2)) — (o[y@Seller — adr], (vOp) J;) — (d’, 0)
where we set’ déafcr[x@Seller — 100 [y@Seller — adr].
ExXAMPLE 7. (Reduction: Recursion) Finally we show an example of n&on, taking the
“silly” example rec XB.(x@B := 1.XB) before. Noting:
(x@B := 1.XB)[rec XB.x@B := 1.XB/xB] %'
hence we have:
(o, recXBx@B:=1xB) — (o[x@B~ 1], rec XB.x@B:= 1.XB)
— (o[x@B+ 1], rec XB.x@B:= 1.xB)

—

Xx@B:=1;rec XB.x@B:= 1.xXB

as expected.

40

10. Global Calculus (3): Typing

10.1. Session TypesAs briefly mentioned at the outset of Section 3, we use sesgi@s R4
as the type structures for the global calculus. In advanceld services and business protocols, the
structures of interaction in which a service/participantingaged in may not be restricted to one-way
messages or RPC-like request-replies. This is why the& algstraction needs to capture a complex
interaction structure of services, leading to the use dfisesypes. The grammar of types follow.

0
a

bool |int | ...
Zislop(6i).0; | Zistop(6).0i | a1|az |t]| rect.a | end

Above 6,0',... range ovewalue typeswhich in the present case only includes atomic data types.
a,a’,... aresession typesNote session channeldss’, ... occur free in session types (this is necessary
because of multiple session channels in a single sessidi24pf We take| to be commutative and
associative, with the identitynd. Recursive types are regarded as regular trees in the sthwadg
[41]. Brief illustration of each construct follows.

e ;s | op(6;).0j is abranching input type at,dndicating possibilities for receiving any
of the operators frordop } (which should be pairwise distinct) with a value of ty@e

e 2;sTop(6).aj, abranching output type at $s the exact dual of the above.

e 01 | 02 is aparallel composition ofi; and a,, abstracting parallel composition of two
sessions. We demand session channeds iand those i, are disjoint.

e tis atype variable while rec t.a is arecursive typewhererec t binds free occurrences
of t in a. A recursive type represents a session with a loop. We assagterecursion is
guarded, i.e., imec t.a, the typea should be either an input/output typermary parallel
composition of input/output types.

e end is theinaction type indicating termination of a sessioend is often omitted.

Each time a session occurs at a shared service channebrsebsinnels are freshly generated and
exchanged. Thus the interface of a service should indicatector of session channels to be ex-
changed, in addition to how they are used. This is repreddnt@bstract session typer service
type in which concrete instances of session channels in a sefygie are abstracted, written:

(§a
wheres’is a vector of pairwise distinct session channels which Ehoaver all session channels in
o, anda does not contain free type variables) binds occurrences of session channels in @,
which induces the standard alpha-equality.
Before illustrating these types with examples, we intradacnatural notion of duality. The
co-type or dual, of a, writtend, is given as follows.

Zis fop(8).0i = Zslop(6).aj
Zis lop(8).0i = ZisTop(8).oj
rect.a = rect.a
t =t
end = end

For example, the co-type sf| QuoteReq(string).end issT QuoteReq(stri ng).end, exchanging
input and output. The duality plays an essential role in thEssquent technical development.

10.2. Examples of Session Types.

ExAMPLE 8. (Session Type: basics) Consider the following intecactcf. Example 1), as-
sumingadr and prd are variables oft ri ng type, located at both Buyer and Seller.

Buyer — Seller : s1({QuoteReq, prd, prd).
(32) Seller — Buyer : sp(QuoteRep, 100, y).
Buyer — Seller : s;(Purchase, adr, adr).0

41

The interface which Seller offers (as far as this interatjoes) can be described by the following
session type:

(33) s1] QuoteReq(string). s, T QuoteRep(i nt). s; | Purchase(string). end
the same interaction can be type-abstracted from the viewpbBuyer:

(34) s1 1 QuoteReq(string). s, | QuoteRep(i nt). 511 Purchase(string). end
which is nothing but the co-type of (33). Now let us add a sesaiitiation to (33):

Buyer — Seller : ch(ss2).

Buyer — Seller : s1(QuoteReq, prd, prd).
Seller — Buyer : s{QuoteRep, 100, y).
Buyer — Seller : s1{QuoteAcc, adr, adr).0

Then the service type of Seller at chansiels given as:

(39)

(36) (s152) 1] QuoteReq(string). s, T QuoteRep(i nt). s1 | Purchase(string). end

which says: firstly, two fresh session chanmgls, (in this order) are exchanged; then, using these
two channels, communication of the represented shape p&es. Thus the service type (36) de-
scribes the whole of the behaviour starting froeh albeit abstractly.

ExAMPLE 9. (Session Type: branching) Let us refine (32) with brarghin

Buyer — Seller : 51{QuoteReq, prd, prd).
Seller — Buyer : sp(QuoteRep, 100, y).
(37) Buyer — Seller : s;(Purchase, adr, adr).0
+
Buyer — Seller : s;(Nothanks).0
This can be abstracted, from the viewpoint of Seller:

s1 | QuoteReq(string). s;T QuoteRep(i nt).

(38) (s1] Purchase(string).end + s1| Nothanks().end)

Note the sumt- in (38) means the inputting party (here Seller) waits witb tptions,Purchase and
Nothanks: on the other hand, the co-type of (38) (seen from Buyer's)sigcomes:

$1 1 QuoteReq(string). s, | QuoteRep(i nt).

(39) (s17 Purchase(string).end + s17 Nothanks().end)

in which the sumt in (38) means that the outputting party (here Buyer) maycselee ofPurchase
andNothanks from the two options.

ExAMPLE 10. (Session Type: recursion) Consider the following bé&hayin whichB contin-
uously greet#\.
(40) rec XB.B— A : s(Greeting, “helld”, x). XB
We can then abstract this behaviour as, fi@sviewpoint:
(41) recY.s | Greetings(string).Y
whereas foA the same interaction is abstracted as:
(42) recY.s | Greetings(string).Y

which states thah repeatedly receives greetings. As a more meaningful resyrgonsider the
following refinement of (37):

Buyer — Seller : s1({QuoteReq, prd, prd).
Seller — Buyer : s{QuoteRep, 100, y).
(43) rec XBuver, Buyer — Seller : sp(Purchase, adr, adr).0
+
Buyer — Seller : 5 (Nothanks). XBuver

42

This behaviour, seen from the viewpoint of Seller, can berabted as the following session type:

$1 | QuoteReq(string).
S 1 QuoteRep(i nt).
(44) rec. s | Purchase(string).end
+
$1 | Nothanks().Y

It may be notable that the following conditional has the saesion type as (44).

Buyer — Seller : s1{QuoteReq, prd, prd).
Seller — Buyer : sp(QuoteRep, 100, y).
Buyer if reasonablg/)@Buyer then
(45) rec X ' Buyer — Seller : 1 (Purchase, adr, adr).0
else

Buyer — Seller : 5 (Nothanks). XBuver

One can further prefix (45) with a session initiation, for exse with Buyer — Seller : ch(s1sp), in
which case we obtain the service type ébr

$1 | QuoteReq(string).
S 1 QuoteRep(i nt).
(46) (s152) recY. s | Purchase(string).end
+
$1 | Nothanks().Y

which says that, after initialisation request exchangimg fresh session channels (designated;as
andsp), it first waits for aQuoteReq message &, to which it replies withQuoteRep via s, then it
waits for two optionPurchase andNothanks ats;: in the former case it finishes this session while
in the latter it recurs to the initial state, waiting for ahet QuoteReq message.

10.3. Typing Rules. A typed termis a term annotated with types following a set of typing
rules. There are two kinds of types we usgession typeare assigned to session channels, while
service typesire assigned to service channels. A typed term, which wecalbdyping judgement,
has the shape:

(47) Fr-1o A

wherel™ assigns service types to located service channels Aaggssion types to located session
channels. The former is callegbrvice typing the lattersession typindl" can also include other
forms of assignments). The grammar of service/sessionggpare given byg€onsists of pairwise
distinct session channels):
r == 0 | IlNch@A:®a | Ix@A:Var(®) | I XA:A
A 0 | A§ABl:a | AS:L
In a service typing, three forms of assignments are usedt, El@A : (§)a says:
A service channel ch is located at A, and ch offers a servitaface repre-
sented by a service tyggé)a.
Here “located alA” means the service is offered #ythroughch. In “(§)a”, “ ()" act as a binder,
binding the occurrences o§"ih a. Hence(§)a is taken up tax-convertibility. The next assignment
X@A: Var(0) says:
A variable x located at A may store values of t@e
Unlike service channels, the same variable (gagan be located at different participants, so that
X@A andx@B are distinct variables. Thus we regat@A : Var(6) as mappingk@A (a pair of a
channel and a principal) to its typ&ar(8). The third assignment” : A says:
When the interaction recurs to’Xit has a session typindy.

Assignment to a term variable becomes necessary when werégpesive behaviour. Each term
variable is assigned a unique principal name.

43

CONVENTION 2. We hereafter assume a service typing defines a functitewiiolg the above
reading. We writd (ch) for a pair of a principal and a service type assignedhol (x@A) for a
variable type assigned 1@A; andl" (X) for a pair of a principal and a session typing assignex.to

Next. a session typing uses the following primary form ofgssent,s[A, B| : a, which says:

A vector of session channeds all belonging to a same session which is be-

tween A and B, has the session tgpahen seen from the viewpoint of A.
In the main part of the present study, we assuing B in §A,B] : a (we shall demand it in our
typing). We regard|A, B| : a as mapping fo a direction[A, B] as well asa. As we shall see later,
this is the same thing as mappiatpthe reverse directiofB, A] and the duatr of a. We stipulate:

CONVENTION 3. We hereafter assume a session typing defines a functiowfoy the above
reading. We write\(5) for a pair of[A, B] and a session type. Similarly we assume that the domain
of Ais disjoint, i.e. wheneves; ;% € dom(A) s.t.s] # %, we have{$} N {$} = 0.

As an example of a session typing, given the following irnt&cm:
(48) Buyer — Seller : 51(Req, prd, prd).Seller — Buyer : s;(Rep, price, price).0
one possible assignment is:
(49) 1Sy [Buyer,Seller] : s1| Req(string).s;7 Rep(int). end
which states, simultaneously:
(1) s1 andsp belong to a same session;
(2) that session is betwe@&uyer andSeller: and
(3) it has the given session type when seen fRuger’s point of view.
The other form of assignmens,: 7L, is used when we know the session typesatill never be
abstracted by session initiation (this is known for sure mvbee or more of channels gafe hidden,

see(G-TRESL,?2) later).

We are ready to introduce typing rules. We start from thertgpf session initiation.
r,ch@B: (ar-I>A-§BA:a0 A#B

I, ch@B: (at-A—B:ch(§.l>A

The conclusion (the lower-half) introduces a sessionahstation prefixch(v §) in the term. Sinces ™
is to be abstracted as session channels belonging to a seggen, we demand that, in the premise
(the upper-half), that there is a session type assignmeichvessigns fo a session type. Sineds’
directed fromB to A, a designates a session type seen fi@gwviewpoint: hence we can safely have
ch@B: (5)a in the service typing of the conclusiooh(@B: (§)a is also assumed in the premise since
ch may have already been usedlirbased on the assumption that a service channel can be shared
just as the standard URL). Both and B need be mentioned igs[B,A] : a in the premise since a
session is always between two parties: however the inféoman A should be erased ch@B : ()
sincech can be used by multiple users (participants).

We next type communication.

M-1>A-5ABj:aj TFe@A:0; THx@B:8; se{§} jeJ A#B
I'-A—B:s(opj, & X).1>A-5[AB]: ZjcisT 0p;j(8j).qj '

In (G-TComMm), our purpose is to type the term in the conclusion,

(50) A—B:s(opj, &, Xj).lj.

To type this,| should contain a session type betwdeandB such that its session channels contain

s. This session typeyj, is to be combined with the type for the communication in tbeatusion.

The remaining session types@will remain unchanged. The communicated vadis typed in the

source A) while the variablex is typed in the targetR), with the same typ®. In the conclusion, we

use a branching type which should include the operapwhose value type i6;, and possibly (and
usually) adding other operator names and communicatee ¥ghes. The rule uses the an auxiliary

(G-TINIT)

(G-TComm)

44

judgementl” F e@A : 6 which sayse atA has typed (the judgement is derived in the standard way,
starting froml" - x@A : 8 whenx@A : Var(8) isinl, and e.g' - 1@A: i nt regardless of andA).

In (G-TCoMM), the session type in focus is given with the direction frano B, i.e. it abstracts
the structure of the interaction in this session from thevpieint of A. While this is consistent, there
is no reason we should view this session from the viewpoiit afe may as well regard it from the
viewpoint of a receiverB. Thus we have the following symmetric variant(@-TComm).
r-1>A-§BA:a; TFe@A:8; THx@B:08; sc{§ jel A#B

M'-A—B:s(opj, & X).1>A-8[B,A]: Zjcys| 0pj(8;).Tj '
The typing of the assignment rule follows.
FrN-x@A:0 TFe@A:06 THI>A

MNE-x=e@A.I>A
In this rule, there is no change in the session typin¢as well as in the service typinig) since

assignment does not change interaction structure. Notyples ofx ande are taken at locatioA.
For conditionals:

(G-TCommINV)

(G-TASSIGN

M -e@A:bool THIi>A THIZ>A
I if e@Athen I else Io > A

In the premise of this rule, we demamgdand |, has an identical session typing and an identical
service typing. Thus either branch is taken, the type attétraremains identical. Similarly we type
the summation:

(G-TIF)

FrEhsA ThHIp>A
F=li+l>A
The following rule is worth presenting, which is derivabledpplying(G-TComMM) and(G-T Sum)
repeatedly. We use the notation for tivéold summation.
r-1j>A-5[AB:a; T-e@A:6; TF-x;@B:0; sc{§ JCK
Mk ZjcsA—B:s(op;, &, Xj).1j>A-5[A B : Zeksc Tope(Bk) .o

(G-TSum)

(G-TBRA)

Inthe premise of G-TBRA), it is implicit from indice symbols thaj ranges oved. To typeZjcjA—

B : s(opj, €, Xj).lj, eachlj needs to have a session type betwéeand B such that its session
channels contais. Each of these session types, can be distinct, but they should have the same
vector of session channels, so that we can combine them sitggke type in the conclusion. Other
session typesd) should remain common in all branches in the premise. In tmelasion, we can
combine session types for different branches into a singgsien type, adding operator names and
communicated value types. Note the value type;jok typed in the sourceA) while the variable

Xj is typed in the targetH). Note (G-TComMm) is a special case qiG-TBRA), when then-fold
branching is a singleton. The rule has its obvious dual,esponding tqG-TCoMMINV), which

we omit.

To type parallel composition, we use the standard lineaxitiydition. The the operatar is
well-defined whenever the linearity condition is satisfiedl & such thas[A,B] : a € Aj e Ay iff
either

(1) §A,B]:ag € Aq, {8}[A,B]: 0z € Ay anda = a | Op;
(2) §A,B]:a e Aqand{8} Nfsc(Az) = 0, or its symmetric case;
The typing rule follows.
FEIi>A THIZ A
FEl] lo>Ar 00

For restriction we have three rules. The first one is when vet fiide a session channel in a

session type assignment.

(G-TPaR)

1A §s5[AB]:a
FrE(vs)I>A §%: L
To understand the rule, note the hiding is introduced afiergession initiation takes place (see
(G-INIT) in Section 9.2). Once this is done, there is no possibiligt these session channels are

(G-TREeS))

45

abstracted byG-TINIT). Hence the session typeis no longer necessary, so that we replace it with
L. After this, we take off a hidden session channel one by améwéhen this is empty, takes it away
(belowe denotes the empty vector):

FrElsA §s5: L
FrE(vs) A §%: L
Next we treat the typing rule for a term variable.

(G-TVAR)

M=-1sA e: L
Me=(vs) I>A

(G-TRES2) (G-TRES3)

M, XAAFXAR>A

This is one of the two base cases (another is the inactiotettdeelow), introducing a service typing
on the left-hand side of the turnstile. This typing shouliibfie Conventions above, and, moreover, it
should contain the assignment for the term variable of @giefaboveX), with the same participant
annotation (abova). Following X”: A we introduceh as the session typing & in the conclusion.
The recursion rule is symmetric {&-TVAR):

F-XA:ARI>A

Mrec XA I>A

Here our purpose is to typec X”.1, with the session typind. For this purpose it suffices that
has session typing under the assumptiod” has that same session typing, following the standard
treatment of recursion. Finally the typing rule for the itian follows.

Vi#j. {§}n{§}=0

0 Ui §S[Ai,Bilend

The rule assigns pairwise disjoint vectors the empty adijpes. The typing rules are summarised
in Figure 19.

(G-TREeC)

(G-TZERO)

10.4. Properties of Type Discipline.We discuss basic properties of the typing system. Below
we write e.g.l -’ etc. to indicate a disjoint union.

PROPOSITIONI.

(1) (weakening) ™ + | > A impliesl -’ = | > A. With§ be fresh.l" - | > A implies
I 1> A-§A Blend.

(2) (thinning) Assumec(I"’)Nfc(l) =0. Thenl-I"" - | > Aimpliesl - | > A.

(3) (co-type)l + I > A-§A Bla impliesl” - | > A-§[B,AJa.

Proof. Standard. For (co-type), note this information is explyogenerated only ifG-TINIT)
and(G-TCowm), which show (by induction hypothesis) such inference isjts. O

Next, we observe free session channels can be grouped iiararway in the typing rules.

PROPOSITION2 (grouping of session names).

(1) Supposé I > A, §5([A,B]:B. Then there are always; » such thal” - 1 > A, §[A BJ:
ag, §2[A, B] L.

(2) Supposd” + | > A, §[A B]: a1, 5[A B]:a,. Then there is always sonflesuch that
FE1>A §%[AB:B

Proof. (1) is easy by induction on typing rules (fé6-TPAR) using the disjointness in the
premise; forlG-TCoM) and(G-TCoMINV) we construct the assignment fardr S, depending on
to whichs belongs to). (2) is also easy by induction (f6-TRes1/2/3) we observen; # L by the
shape of typing, even though we can in fact treat the assighafehe forms™). O

Proposition 2 says the grouping of free session channeeiadssion typing is in fact arbitrary: they
become relevant only when they are abstracted@yT INIT).

The type discipline has a minimal typing, which is closellated with automatic type inference
ala ML. To formulate minimality, we use the following ordeg. Belowclosed typeare those types
without free type variables.

46

I, ch@B:(SatI>A-§BA:a A#B
I, ch@B:(§)at-A—B:chvs).l>A

(G-TINIT)

r-1>A-5[ABl:a; TFe@A:6; T-x@B:8; sc{5} jeJ A#B
= A—B:s(opj, & X).I > A-§[A B]:sT Zicgopi(8).

(G-TCowm)

r-1>A-5B,A:aj NFe@A:6; T-x@B:8; sc{8} jeJ A#B
'+ A—B:s(opj, & x).| > A-§[B,A]:s] Zicgopi(6).

(G-TComINv)

MIEx@A:6 THe@A: 0 THIA
MEx=e@A.l>A

(G-TASGN)

oA rElesA MFe@A:bool THIIA THIZ>A

(C-TSUM) — 5 oA (G-I i e@Athen Iy else 5 A
(O o 8
B
(G-TZERO) I well-formed Vi#j. {§}N{§}=0

[F 0> Ui § (A, Bijend

FIGURE 19. Typing Rules for Global Calculus

DEFINITION 1 (inclusion ordering). Theinclusion orderinge is the relation over closed types
given as:a € B iff aR B for someR satisfying the following rules, where each rule says that: f
the conclusion to be satisfied, the condition(s) in the psershould be satisfied.

B~ Zicyslop(8).adcd Vieldajea

(Ine-n) 5ic15L0n(8) i € B
(Inc-out) BZ ZiGJ/STZ?Sé?igha({(;)C.&]; @ViBe J.aj€aj
(INC-PAR) B~ 0‘/1|°‘/2G1|z; @@Gé 02 € aj
(INC-END) egd%o[i

(INC-150) aa’ @@ %(a ~a)

wherez is the standard tree isomorphism on recursive types. Ai@ia_ satisfying these conditions
is called awitnessof €. It is easy to see thagt itself is a witness of itself, defining the largest such.
We then extend to well-formed session typings by:

AcCKHN AelN aed

Aed A-§AB]:a € A-§AB]: o

a7

and to the well-formed service typings by:

rcr’ rer’ aead

rer’ r-ch@A: (§a e I''-ch@A: (§a’
We also call these extended relatiomslusion ordering

In brief, o € o’ means that is the result of cutting off some branches (including botbuinand

output) froma’ at zero or more points. This ordering is different from thanstard subtyping on
session typesiP] we shall introduce in Section 12. The inclusion orderingaiso used in our
technical development in Section 16. We observe:

PROPOSITION3. The relatione is a partial order on types modubs.

Proof. Standard 19], noting the coinductive definition a£ in Definition 1 means thag (or its
witness) can be regarded as a simulation on determinisgsirSee also the corresponding proof for
Proposition 6, §12.1, page 58, on subtyping on session types O

CONVENTION 4. Henceforth we always take as the relation on types modute.
DEFINITION 2. We writea LI B for the least upper bound of and if it exists.
PropPosITION4. If a1 > has an upper-bound then they have the least upper bound.

Proof. If the assumption holds, then we can superimpose two (pgssiinite) trees, for which
we can take the union of branches fram, at each node, which is also a regular tree and which is
surely smaller than any such upper-bound. O

We now establish the existence of minimal typing (which asely related with the preceding works
on principal types for recursively typed session tyde4§,[cf. [16, 26). Below in (2) we writel” F |
forT 11> 0.

PROPOSITIONS.
(1) (subsumption)etl € " andA € A'. Thenl + | > Aimpliesl” | > A’
(2) (existence of minimal typind)etl” - | for somel’. Then there existSg such that g - |
and wheneveF’ I | we havel g € I’. Moreover suchi g can be algorithmically calcula-
ble from I. We call’g theminimum service typing of.

Proof. (1) is because the rules which use this informatig®; TCom) and (G-TCoMmINV),
only demands the communication operation the term useslisded in the type. Thus making the
type include more operations is always safe. For (2), wegtbe following stronger result:

Claim. Assume:

(a) The free session namesliare grouped into disjoint vectors, each of which, sapgdether
with an ordered pair of involved participants, sgd,B), so that it can be used as e.qg.
§A,B] : a. Write Y for the set of the mutually disjoint vectors correspondiagstich a
grouping (cf. Proposition 2).
(b) Letl be typable with a session typing which conformslt@.e. its type assignments are
done using the disjoint vectors).
(c) €’ extendse by the rulea €’ t for eacha andt.
Then we havéd g - | >Ag such that (1)Ag conforms toy; and (2) WheneveF F | >A such thatAe
conforms toy, we havelg € I andAg €’ A. In particular, if a term variable does not occurlin
thene&’ can be replaced bg.

The proof is by induction on the minimal typing rules givenRigure 20, in comparison with the
original typing rules in Figure 19. The former inductivelgrestructs the typings which are minimal
w.r.t. the typing given by the latter. In Figure 20, it is as®d that the subject term (the term to
be type checked) is already type safe. In the figure we wvide(a) for the set of type variables in

48

[min A5 A-8[B,A ;B chgfn(l) tvar(B) = {t}

(G-MTINIT-1) I, ch@B: (3)(Blend/t]) Fmin At — BT : ch(V§). 4> A

I, ch@B: (§)a Fmin A>A-S[B,A B tvar(B) = {t}

(GMTINT2) FCh@B : (§(a U Blond/]) Fin A™ — B chvE) A5

Mmin A>A-§ABl:aj THe@A:0; TFx@B:8; se{§ jel
[Fmin At — B2 : s(op;, € X).A>A-§[A B Zjcj3ST0pj(6)).0j

(G-MTComm)

Mmin I>A-§[B,Al:aj THe@A:8; I'-x@B:6; sc{§ jecJ
M= A—B:sopj, & X).1 > A-§[B,A:s| Zicqjyopi(6i). a

(G-MTCoMmINV)

I Fmin X@A:0 T Hpin @A T hpin I >A

(G-MTASGN) [Fmin X 1= €@A. 1 >A

Mibminl1>A1 Tobmin l2>A2

G-MTSum
() MUl Fmin li+ 2> A1UAS

[Fmin @€@A:bo0l T hpin li>A1 T Fpin 2> 42
I Fmin if @@Athen I else [o > A UAp

(G-MTIF)

MiFminli>A1 Tobmin 2> A2
MUl Fmin b1 [T 120> A 0 Ay

(G-MTPAR)

I Fmin 1 >4, 51S5[A,B]:a

-MTResl
(G-MTRESY) = S Toh 55 1

[Fmin [> A, §S5: L
I Fmin (VS) I>A §%: L

MEmin 1A, €1 L

G-MTRES2
() [Fmin (VS) 1A

(G-MTRES3)

Vi.§ ey’ for appropriate)’ s.t. ¢/ Dy tfresh

G-MTVAR ~
() XA:t}_minXADUiS[Aini}:t

F-XA:tbpin A

G-MTREC
() [Fmin rec XA 1 > solve(t,A)

Vi.§ €/ for appropriatal) s.t. /' >
I Fmin 0> Ui § [Ah Bi]end

(G-MTZERO)

FIGURE 20. Minimal Typing Rules for Global Calculus

o. We need some care in calculating minimal typing in the preseof recursive types, for which
we follow the preceding studied§] (cf. [16, 26). In Figure 20, this is treated i(G-MTVAR) and
(G-MTREeC), as well as ifG-MTINIT-1). In (G-MTVAR), when we introduce a term variable, we
also introduce a type variablgy in the premise refers to the disjoint vectors which extahds that,
after abstracting session channels by initialisationréiselt is precisely mentioned in(a) above. In
(G-MTREC), solve(t,A) essentially solves the equatians §[A;, Bi] : a; for eachs{A;, Bi] : o € A.
Whent does appear ig[A,Bj] : aj, the corresponding components$A}, B;] : rec t.q;. If not, then
we getsA;, Bi] : aj[end/t] whereai[end/t] is the result of substitutingnd for each (free, by bound
name convention) occurrencetofNote this is simpler than the constraint solving 16]26: this is

49

because there is only positive occurrences of type vagati#nally in (G-MTINIT-1), when type

variables occur ir, we simply replace them witbnd, whereB[end/t] is the result of substituting
end for each (free, by bound name convention) occurrence of vgpiables fromt. This substi-
tution is sound when we already know the target term is wgletl (note that, in the original rule
(G-TINIT), a andf can never include a free type variabl¢s-MTComMm) and(G-MTCoOMINV)
are chosen appropriately for its use in abstraction. Fa fression channels, we (arbitrarily) fix
which direction (say fronA to B) to use. In the rule$G-MTINIT), (G-MTSumMm) and (G-MTIF),
the merge operatar is used, for which we use the following observation:

Claim. a3, € Bimpliesa;Uay € B.

Using this Claim, the cases for these three rules are imrreedide remaining rules are also direct
from the shape of each pair of the corresponding rules. O

Next we turn to subject reduction. we start from basic lemrBagow and henceforth we wrife o
when the typing ob conforms tol".

LEMMA 1.
(1) (substitution, 1)f [, XA: A | > & andl 1" > Athenl = I[I”/XA] > 4.
(2) (substitution, 2)f I -0, - a(x@A) : 8 andl F v: 6, thenl” - G[x@A — V].

Proof. See Appendix A. O

The subject reduction in the present typing doespreserve session typing, for the obvious reason:
if | reduces td’, it may lose the initial part of interactions, which, if it & a session channel, will
demand truncation of the corresponding session typing.

THEOREML1.

(1) (Subject Congruencdh™ - | > Aand I =1’ thenl” - I’ > A (up to alpha-renaming).

(2) (Subject Reduction, Bssumd + o. Thenl + | > Aand(o,l) — (¢/,1") imply T + o’
andl - | > A/ for somed'.

(3) (Subject Reduction, 2ssumd - g. Thenrl -1 and (g,1) — (¢’,1’) imply " - ¢’ and
retn.

Proof. See Appendix A. O

10.5. Examples of Typing.

ExamMpPLE 11. We conclude the section, by showing how it is possibleype tan example:
consider the buyer-seller case with the following intei@ctescribed in the global calculus.

Buyer — Sel | er : B2SCh(s).Buyer — Sel | er : s|Request For Quot e].
Sel | er —Buyer : s(Quot eResponse, Vquote, Xquote) -
(Buyer — Sel | er : s[Quot eRej ect | +
Buyer — Sel | er : s|Quot eAccept ance].
Sel | er — Shi pper : S2ShCh(s).
Sel | er — Shi pper : §'(Request Del Det ai | s, Buyer, Xgjent)-
Shi pper — Sel I er : §'[Del i veryDet ai | s,DD,Xpp]
Sel | er — Buyer :s[Del i veryDetai | s, Xpp,Xpp])

Above there are two sessions: the one between the buyer argblier, and the one between the
seller and the shipper. Note that both are initialised byssisa “init” operation and we have also
included the choice. Another notable thing is that in the ta® interactions, the variableyp is

50

involved three times: the first two times it is indeed the saaxdéable located at the seller and as-
signed with the delivery detaiBD, but the third one is another variable located at the buyédchvh
just happen to have the same name, but completely distimepliby the semantics of mini-CDL.
But what are the types for channeB2SCh and S2ShCh? It can be verified by the rules in Ap-
pendix that the the interactions above can be typed\by B2SCh@Sel | er (s)[Buyer ,Sel | er] :

a - S2ShCh@shi pper [Sel | er , Shi pper] : o’ where

o =s 71 Request For Quot e().s | Quot eResponse(Quot eType).(sT Quot eRej ect ()+
sT Quot eAcceptance().s| Order Confirmation().
s| DeliveryDetail s(DDType))
anda’ = ¢ 1 Request Del Detai | s(PTypg.s | DeliveryDetail s(DDType).

ExAMPLE 12. In the last example of this section, we give a typing for 20.weld simply
have that” - comm@Seller(B2SchData) : B2Schi (String) | Data 1 (String).

51

11. End-Point Calculus (1): Syntax and Reduction

The end-point calculus, an applied variant of tiealculus B4], specifies local behaviours of
end-points and their composition. For example considefdhewing term in the global calculus
(cf. Example 1):

(51) Buyer — Seller : s{QuoteAccept, 100, x, ., 0).

This global description says that Buyer send3uateAccept message with value 100 to Seller, that
Seller receives it, and that Seller saves this value in italleariablex. The end-point calculus
describes the same situation as combination of local bebgvocated at each end-point. First there
is Buyer’s behaviour:

(52) Buyer[5<1 QuoteAccept(100).0 g,
whereog is Buyer’s local state. Similarly we have Seller's local beiour:
(53) Seller[s>> QuoteAccept(X).0]gg

whereags is Seller’s local state. Interaction takes place when (5@) @3) are concurrently com-
posed, as follows.

(54) Seller[s>> QuoteAccept(X).0 |g | Buyer[3<1 QuoteAccept(100).0 |g,

Let this term be writterM. Then the communication event is represented using thewsity one-
step reduction:

(55) M — Seller[0]gqx—10 | Buyer[0]o,

Note the state at Seller is updated as a result of commuaitalin correspondence with the global
calculus, communication in the end-point calculus is oiggthin the unit of session, where session
initiation is done by communicating fresh channels whildioary, in-session communication is done
via session channels involving operator selection andevplissing, as described above. The formal
syntax and reduction rules of the end-point calculus arsegured in the present section.

Since an input and an output are separately described inntdg@int calculus, it is possible
that there is a communication mismatch between two inteiggtarties. For example, instead of
(54), we may have:

(56) Seller[s> QuoteAccept(X).0 |g | Buyer[3< QuoteReject.0 |g;

Here Seller is expecting a QuoteAccept message with ongdantelue, while Buyer is sending a
nullary QuoteReject message. To avoid such a situation,sgeype discipline. We use the same
syntax of types as in the global calculus. For example, Bellgerface asin (56) is represented by
the following session type:

(57) s@Seller : s | QuoteAccept(i nt).end
while that of Buyer is abstracted as:
(58) s@Buyer : sT QuoteReject().end

Since two signatures, (57) and (58), are clearly incompgtilve conclude the composition (56) is
not well-typed. The session types for the end-point cakuke a notion of subtyping which plays a
central role in the theory of end-point projection. The g@ss$yping for the end-point calculus and
its basic properties are studied in Section 12.

11.1. Formal Syntax. The end-point calculus is an applied form of treealculus B5] aug-
mented with the notion of participants and their local s(afd3, 15,21). Session initiation uses

52

bound name passing, while in-session communication usexbles at a local store, in the spirit of
[15]. The following grammar definprocessesranged over b, Q. R,

P = Ich(§).P (init-In)
| ch(v§).P (init-Out)
| s> Ziopi(x)-R (input)
| S<op(e)P (output)
| x:=eP (assignment)
| ifethenPelse Q (conditional)
| P®Q (internal sum)
| PIQ (parallel)
| (v P (res)
| X (variable)
| recX.P (recursion)
| O (inaction)

As in the global calculus (cf. Section 8),b,ch,... above denote service channedss’, ... session
channelsx,y,... variables, and, ... term variables. The symbol “!" in ‘¢h(8).P” (the first line)
indicatesreplication [33], which says that the input channel (hedig is available for unbounded
number of invocations.

Processes are located in participants. Participants agiddbmposition are calledetworks
(writtenN, M, ...), whose grammar is given by:

N:= A[P], (participant)
| N|M (parallel-nw)
|(Vvs) N (res-nw)
| € (inaction-nw)

Again as in the global calculugy, B, ... denoteparticipant nameswhich are often simply called
participants o,... denote local states, each mapping a finite set of variablegihite set of value§.

11.2. lllustration of Syntax. For session initiation, we use a pair of mutually compleragnt
input and output:
(59) Ich(8).P ch(v$).Q
In the context of web services, the procesis(§).P may be considered as embodying a repeatedly
available service accessible via a certain URL (here denntehanneth): after invocation, it offers
interaction described iR through session channedst has just received. The process(v§).Q in
turn may be considered as an invoker of a service locatet, avhich communicate fresh session
channels and use them for its subsequent interaction,ideddnQ. The structure of communication
within a session will later be abstracted by a session typerdctice, session initiation may as well
be combined with ordinary communication.

In-session communications use operator names, analogousthods in objects.

(60) st Zjop; (%)-P, s<Iop(€).Q

The inputst> Zjopj(X;).P says that it has one or more finite branches (indexed) byhich can
be invoked. Operatorsp; should be pairwise distinct. Wheip; is invoked, then it instantiates a
communicated value in its local variablg and subsequently behaves as describ&l iHerex; does

6Note the same symbol denotes a distributed state in thelgtalmalus: o in the end-point calculus corre-
sponds to local projection of such a distributed state.

53

notbind its occurrences iR. In turn,S<1op(€).Q invokes an input with operatep, communicating
the result of evaluating an expressigrthen behaves &3.
Another prefix operator is assignment:

(61) x:=eP

which assigns the result of evaluatiego a local variablex (of the enclosing participant), and then
behaves aPB.

There are two constructs which represent internal choiciest,Rhe standard conditional is
written as:

(62) if ethen P else Q

whereeshould evaluate to a boolean value. In this case, ecevaluated, we can deterministically
choose betweeR or Q. A more nondeterministic behaviour is embodied by the steshéhternal
sum:

(63) P®Q
which chooses nondeterministical®yor Q and, once chosen, behaves as such.nFfeéd composi-
tion by & is written®;P.

Combining multiple outputs at the same channel but withirisbperator names through the

n-fold internal sum, we can construct an output prefix whickusl to the branching input prefix.
Since such a sum is often useful, we introduce the followioigtion for denoting it.

(64) s<1Zjopi(&).P

Above we assume eaclp; is pairwise distinct. Note neither input branching or outpranching
above have mixed choice, i.e. all the components have tathereaiutputs or inputs (via a common
session channel), but never both. They offer a structurea faf choice which is easily imple-
mentable, even though some form of mixed choice is usefuidiaresenting complex interaction, as
we discussed in Part I.

The syntax for parallel composition is standard:

(65) PIQ
As in the standard process algebras, and unlike paralleposition in the global calculug? and

Q may as well be engaged in communication between them. Tlrictiem also uses the standard
syntax:

(66) (vs) P
which indicatessis local toP. In the present paper we do not consider restriction of serehannels,
whose addition does not pose any technical problem.

For representing recursive behaviour, we start from a teamafble X and, after forming a
processP in which X may occur free, we introduce:

(67) rec X.P

where, inrec X.P, free occurrences of in P (if any) are bound byec X. Behaviourally, each free
X in P denotes a recurring point (i.e. it recursrex X.P again). In contrast to the global calculus,
cf. Section 8.1, variables need no principal annotationaliy the inaction:

(68) 0

denotes the lack of action, and is the unit for parallel cositpm.
Processes are located in a participant as follows:

(69) AlPls

which says a participant namédis equipped with a behaviol® and a local state. Such partici-
pants can be combined by parallel composition:

(70) N|M

54

By the typing rules discussed in the next section, in one otwwo participants never have the
same participant names. Since a session chawet be shared between two participants, we also
need restriction:

(71) (vs)N

Finally for technical convenience we also introduce thestima for networks, denoting the lack of
network.

(72) £
which acts as the unit of parallel composition of networks.

ExAMPLE 13. Example 1 (page 34) of a global description would be sprted in the end-
point formalism as a network of the shape:

(73) Buyer[P]g(guyer) | Seller[Qlg(selter)

where the processésandQ together realise the behaviour that we expressed in thebbaiiculus.
As for the Buyer, its behaviour would be represented by thieviing

P = B2SCha (QuoteAccept(*100”) . Py @ QuoteReject(XaportNo) - P2)
whereas the Seller would behave as:
Q = B2SCh> (QuoteAccept(X).Q1 + QuoteReject(y).Q2)
We elaboraté® andQ in the next example.

ExAMPLE 14. Example 2 (page 34) presents the if-then-else construethich case we can
elaborate? andQ above as follows.

P = if (XqQuote < 1000
then B2SCha QuoteAccept(“100”). Py,
else B2SCha QuoteReject(XaportNo) - P2)
Q = B2SCh> [QuoteAccept(X) . Q1 + QuoteReject(y) . Q]

Note thatQ has kept the same shape as before: choice because theauaditiard is located where
at the Buyer side, i.e. it is Buyer who chooses between twodbres. We can further consider the
result of adding session initiation, which is given as theosel description in Example 2, we can
further elaborat® andQ as follows.

P %'chvB2SChs2BCh.

S2BCliXqQuote)-
if (XQuote < 1000)

then B2SCha QuoteAccept(“100”). Py

else B2SCha QuoteReject(XaportNo) - P2)

Q %fichB2schs2Beh.

S2BCH100).
B2SCh> [QuoteAccept(x). Q1 + QuoteReject(y) . Q2]
Note an input is compensated with an output and vice vensalasly a branching with a selection.

55

ExAMPLE 15. Example 3 (page 34) presents the use of parallel inesessimmunications
inside a single session. Using the same skeleton (73) ag alvevdefind® andQ as follows:

P d:efﬁ(v Op,Data).

(Op<1 QuoteAcc(100).P; | Data<i QuoteAcc(adr).P,)

Q d:Gf!ch(Op, Data).
(Opr> QuoteAcc(x).Qq | Datar> QuoteAcc(y).Qz)
in which Buyer offers two parallel outputs while Seller ra@s them with their dual inputs.

11.3. Reduction Rules.Reduction indicates evolution of processes and netwogksmnmu-
nication and other actions. It is given as a binary relatioermetworks, writterN — M. The first
rule is for initiation of a session via invocation of a shasedvice channel.

(INIT) v — v

Allch(8).P | P']; | B[ch(vE).Q | Q']s — (v§) (Al'ch(§).P|P|P'];|B[Q[Q)
In addition to this rule (as well as the next one), we may idelintra-participant communication, on
which we discuss Section 17.2. For in-session communicatie have:
okFelv
A[s>>Ziopj (x)-R |P']5|B[s<10p;(€)Q|Q] — AP} | P']gpy .y, | BIQ| Qo
As before, the rule has its local version, which we omit.
Assignment only affects local store:

(Cowm)

okFelv
Alx:=eP|P']; — A[P|P]y
In conditional, we first evaluates the guard expressiom,tdepending on its value, decides which
branch should be chosen.

(AssIGN)

] o X—V]

(IFTRUE) ofeltt
Alif ethen Py else P2|P']; — A[P1 | P'],
(IFFALSE) oF el ff

Alif ethen Py else P2|P']; — A[P2 | P'],
The internal sunP @ Q has the following standard reduction.

APL® PR — AR|Rg (i=1,2
The rule say$; @ P, can behave as eith®y or Ps.
For parallel composition of processes, we have:
A[Pl| R}a - A[P:H R}a’
[P1|P2|R]; — A[P;[P2|R]s

(Sum)

(PAR) Y

Finally for restriction:
A[P]a - A[P/]a’
A[(vs) Pl — A[(vs) P'],
We also list the corresponding contextual rules for network
M — M M — M
_ RESNW) —— — ——
M|N — M’|N () VM — (vs) M/

(RES)

(PAR-NW)

For recursion, we set:
PlrecX.P/X] — P
(ReC) recX.P - P
Finally the following rule says we take the reduction up te #itructural rules:
M=M M’ — N’ N'=N
M — N

(STRUCT-NW)

56

Allch(9).P| P']5| B[ch(v§).Q | Q]y — (V9 (Allch(§).P|P|P'];|B[Q|Q]y)
okFelv

(INIT)

Com
(COM) st Z10m (%) [P Ty Bl5<10m; Q1 Qg — AP, [P lops | BIQI P
okeltt M — M
IET PAR-NW) — o —
(TR R rethen Proise B P o = AP Pl R W) G = wiN
okelff M — M
|FFALSE RESNW) ————————
()A[ifethen Prelse P|P']; — AP | P'], () (Vs)M — (vs) M/
APl — AP,
(ASSIGN) oFeyv (RES) [Pl = AP

Alx:=eP|P']; — A[P| P/]o[x»—w] Al(vs) Plg — A[(vs) P']s

- A[PL|Rl; — AP |R]y

SO AP emIRls — ARRs © 22 (PR Ap By R], — AIPLIP2IR],

M=M M — N’ N'=N PlrecX.P/X] — P
STRUCT-NW REC
() M —N () recX.P — P

FIGURE 21. Reduction Rules of the End-Point Calculus

where= is the least congruence on networks generated from:

PO = P
PQ = QP
(PQIR = PIQIR)
PoP = P
POQ = QaP
(PoQ®R = Pa(QaR)
(vs)0 = 0
(Vvs1) (V) P = (Vsp) (Vsy) P
(vs)P)Q = (vs) (PIQ) (s¢fn(Q))
and, for networks, we stipulate:
AlPl; = AQly (P=Q
Al(vs)Pl; = (vs) (A[P]y)
Mle = M
MIN = N|M
(LIM)IN = L[(M|N)
(vs)e = ¢
(Vs1)) V)M = (vsp) (Vvs) M
(Vv M)IN = (vs) (MIN) (s¢fn(N))

This concludes the presentation of all reduction rules. ret@rence, in Figure 21 we list all the
reduction rules in one table.

REMARK 1. In the definition ofs, the equations foe allows us to write the n-fold sum;P,
which reduces as, with[C] being a reduction context,[@;P] — C[P] for each i.

57

12. End-Point Calculus (2): Typing

12.1. Types and Subtyping.As we did for the global calculus, we use session ty@d |.e.
the typing for controlling the flow of operations and dateothgh channels. We use the same set of
types as the global calculus, whose grammar is reproduded lber convenience.

6 = bool |int | ...
a = Zislop(6i).0; | Zistop(6i).0; | 1|0z |t]| rect.a | end

Above, as beforeq, B, ... are calledsession typesAgain as before we taketo be commutative and
associative, with the identitynd. Recursive types are regarded as regular trees in the sthwag
[41]. We also useservice typesranged over by, Y, ..., given by:
y = (oa@A | 2A5a@A

Above, [(5) a @A indicates the service located Atwhich is invoked with fresh session channsls ~
and offers service of the shapewhile AS) a @A indicates the type abstraction for the dual invoca-
tion, i.e. a client of arA’s service which invokes with fresh channalarid engages in interactions
abstracted as. Note @A indicates the location of servicein both forms.

As before,s should be a vector of pairwise distinct session channelglwihould cover all
session channels im, anda does not contain free type variablg$) binds occurrences of session
channels irsTh a, which induces the standard alpha-equality. We define thétdas:

(5 a @A =250 @A ?(Ha@A=!(5a@A
where the notion of dualityr of o remains the same.

In the end-point calculus, it is useful to consider a subtgpelation on session types following
[19]. The subtyping is defined only over closed types, i.e. thgges in which no free type variables
occur. The relation is writtenn < B. 7 which intuitively indicates that is more gentle, or duallf
is less constrained, in behaviour.

We define the subtyping relation using coinductionsubtyping witness a relation® which
satisfies all of the following rules, each of which indicatee condition on®, saying: for® to
satisfy the conclusion, it should satisfy the conditiorgisen in the premise. In each rule, is the
standard type isomorphism.

B~Zjcys|opj(6j).Bj 12J aj R
Zicis|op(6).ai R B
The rule says that for the branching type to be more gentle tie other then it should be the case
that subsequent behaviours of an input are more gentlef @mdféers more options. Dually we have:
B~ ZjeysTopi(8)).Bj 1CI o RBi
ZicisTop(8).ai R B
The remaining rules close the relation under type consira@nd=:.
B~PBr[B2 01 RP1 a2R B2 B~ end aRB
a[az R B end R o' R B
Together with the last rule, the subtyping rules are eqaiviato saying we take two infinite trees
and compare their structures by simulation, ¢0,[43. We shall writea < 3 if for some subtyping

witness® we havea < (3. Note the only difference from the defining rules for definietations for
& (in Definition 1, page 47) is in the input branching rule.

(SuB-IN)

(SuB-0OuT)

(SuB-PAR)

(SuB-END)

(SuB-1s0)

(a=a’)

PROPOSITIONG. =< on types module: is a partial order.

Proof. ~ is surely a witness. I is a witness and®’ is another witness then by the shape of
each rule® ; R is surely a witness. For example,df|a>RyR'B theny ~ yi1|y» such thai; Ry
(i=1,2) by (PaR), for whichy;|y.®'B by (1s0) and by assumption. ApplyindPAR) again we have
B = B1|B2 such that; R B; (i = 1,2). By transitivity of~ we are done. For anti-symmetry, we show

The symbol in 9] is used dually, with the same formal content.

58

S == ﬁ(j‘l) coincides with. Clearly=~C S. For the other direction we shawis a bisimulation
which is by definition and by noting transition is determiits O

DEFINITION 3. We writea V 3 for the lub ofa andf3 if it exists.
ProPOSITION?. If the upper bound afi; > exists (w.r.t.<) then their least upper bound exists.

Proof. By superimposing the trees correspondingtie and taking the union/intersection and
checking the result is again a regular tree. O

12.2. Typing Rules. The typing judgement in the local calculus has the form:
MrFaP>A
which mentions a participant name to be inhabited?bgnd
r=Mp A

which is for a network.I" (service typing) and\ (session typing) above are given by the following
grammar.

r RES 0| T,ch:y| I x@A:Var(0) | I, X:A

A = 0 | AS@A:a | AS:L
As before, we stipulate that both service and session tgpitgfine appropriate functions. In par-
ticular, whenever we write e.d.1,[, there areno free channels/session channels/variables shared
between two typings. Some observations:

(1) One basic difference in the grammar above from the ondHerglobal calculus (see
Section 10) is that the session type assignment for the tadalilus is given to the vector
of names at &ingle participant. This is because a session type is now assignedd-
point behaviour, so that one end of a channel should haverahefa session type, rather
than two sides coming together.

(2) When two sides of a session are compatible, we composedhe leave the assignment
of L to §in the typing. Sincel is composable with no other types, tieiffectively makes
§ unusable in further compositiomhis is the standard linear typing in thecalculus.

(3) In the service typingech: (S a@A is the same thing a&)a@A in the global calculus
(hence we often identity these two). It is calleerver type assignmenth: ?(§)a @A
is calledclient type assignmenAs we stipulate below, the compositiondf: ! (§)a @A
andch: 2(§)a@A becomesh: [(§)a@A, since a service can be usable not only once but
also many times. This is from the standard replicated lityae discipline.

The types control composition of processes and networlaugir the following partial algebras.
They say, in brief, session types are treated as linearljewhrvice types are treated as server-client
types.

DEFINITION 4. Writey ory? to indicatey is a server or client type. Then we set:
?

Yoy = ¥
vov =
Yoy = v

Otherwisey; ®Y» is undefined. Then we write; < ', when
(1) T1(ch)®T2(ch) is defined for eackh e fn(M12).
(2) T1(x) =T2(x) for eachx € fn(I1 7).
(3) T1(X) =T(X) for eachX € fn(I1 7).
Finally whenll; < ', we setl; © ', as the union of 1 andl", except, for each channeth such that
che fn(l12), the type newly assigned this "1 (ch) © F»(ch). Similarly we set:
acod = L
aeB = ap (fe(a)nfe(B) = 0)
Otherwisen1 ® a3 is undefined. As above we defifg © A, andA; < Ap.

59

We can now introduce the typing rules. The first rule is foriigpthe inputting side of initiali-

sation.
kA P> S@A:a

I,ch:1(8§)a@A Falch(§).P> 0
Note that, in the premise, we do not allow those session @éisoither than the target of initialisation
to be present in the session typing, nor another serverdgypith ch as a subject ifi. The former
preventsfree session channels to be under the replicated input, guaiagtéheir linear usage: the
latter prevents another service channel to be uetekVe can further constraih to have no server
(") mode channels: this makehk uniform receptivén the sense of4g].

The outputting side of initialisation is analogous, exctiyat linearity constraint needs not be
specified.

(TINIT-IN)

I, ch:?2(8§a@B Ha P> A-8@A: o
I, ch:2(3a@B t-a ch(vg).P > A
Above A and B can be identical. The fact we alloeh@B: (§)a to occur in the premise means
(together with (Par) rule) an invocation to a service candigedas many times as needed (as far as it
is type correct).

Next we present typing for in-session communication, stgrfrom input (which involves
branching with distinct operators).

KCJ sef Tkxj:8j TkaPj>A-5@A:q;j

I Fa s> Zjopj(Xj).Pj > A-S@A: ZyckSc!opk(Bk) - ok
In the rule above, the typing can have less branches tharetiigprocess, so that the process is
prepared to receive (get invoked at) any operation spedifitite type. Dually we have:
jeJCK Tke:var(§) IFaP>A-S@A:q
I A S<iopj(e).P > A-S@A: ZyeckST 0pc(Bk) - Ok
Here the typing can have more branches than the real proseshat the process invokes with
operators at most those specified in types. CombifilBRANCH) and (TSEL), an output never
tries to invoke a non-existent option in its matching input.

The rules for assignment is standard.
F-ax:0 THe:8 TeaP>A

MNax:=ePr>A

(TINIT-OUT)

(TBRANCH)

(TSEL)

(TASSIGN)

The conditional is also standard.
(TI9) M-e:bool THAP>A THAQXA
[Faif ethen Pelse Q> A
Note the session typings are identical Pand forQ in the premise: this is essentially a linearity
constraint, ensuring a linear name (session channel) & preeisely once in each branch. Practical
ramifications are possible: in particular, we can easilyneethe linear typing into the affine one. The
typing of a sum is similar to conditional.
Fr-aP>A THAQDA
FrM-APeQ>A
The rule for parallel composition reads:
FFAP>A1 THAQDA ANy
M=a P ‘ QA1 00,
The introducedL -types are eliminated by restriction.
FFAPD>ASSS: L FraP>Ae: L
FrFA (V) P>ASS: L FFa (VP> A
In (TRES,2), € denotes the empty vector. The next two rules are for termakées and recursion,
and is standard.

(TSum)

(TPAR)

(TRES,1)

(TRES,2)

MX:AFAPDA

(TVAR) FFarecX.P> A

FXAaxea TREC

60

The rule for inaction introduces the empty session typing.

TI _
(TINACT) = 550

We may further constraif so that it only contains assignments to term variables, iatpe vari-
ables and client channels (i.e. of the foom@A : (§)a). If we add this constraint to this rule as
well as to(TVAR), we have a property that the existence of an input channéidyip I' implies its
existence in the subject process/network.

To start session typing, we need to introduce inaction typsch represent a terminal point of
a session type together with a recursive variable, whichtieduced in (TVar)).
FrEaP>A {§Nfn(A) =0 FrEaP>A {§iNfn(A)=0

A P>A-8@A: end Fr-aP>AS: L

The next rule links process typing to the typing of a network.
FrFaP>A THO@A

r=A[P];>A
Composition and inaction rules for networks follow.
FENi>A; TENo>Ay A<D

FENL [No> AL OA, M-e>0
Restriction rules are also a precise copy of the correspondiles for processes.
Fr’EM>ASsSH: L FrEMpAe: L
Fr-EVsMp>A§SH: L r-Mp A
We also have an exact copy of the two weakening rules, listémhbfor reference:
r-EMeoA {§infn(A)=0 r’EMe A {§nfn(d)=0
Nr-=Mp>A-S@A: end r’-E=Mo>A-S: L

The list of all the typing rules are given in Figure 22

The standard syntactic properties follow. Below in (#)") denotes all names in, which
include term variables, standard variables and channels.

(WEAK-end) (WEAK-L)

(TPARTICIPANT)

(TPAR-NW) (TINACT-NW)

(TRES-NW, 1)

(TRES-NW, 2)

(WEAK-end-NW)

(WEAK-L-NW)

PROPOSITIONS.
(1) (weakening) T - M > A impliesT-T" - M > A. With § fresh,l = M > A implies
r-Mps>AS: L.
(2) (thinning) Assumeéc(I"’)Nfn(M) = 0. Thenl-I"" = M > Aimpliesl - M > A.
(3) (subsumption)f I',ch@A: (§a - M > A anda < B thenl,ch@A: (B F M > A.
Similarly, ifr - M > A-§@A: a anda < Bthenl H M > A-S@A: B.

Proof. In Appendix B. O

REMARK 2 (subsumption at service channels). The subsumption éxsehvice typing at input
channels does not hold in the present system. Howsseranticallysuch service typing is in fact
sound. Thus we may as well add the following rule:
r,ch@A: (aFMp>A a =P

r,ch@A: (§)BFM>A
A basic consequence of adding this rule is that we have ngt thel minimal typing but also the
principal typing, see Remark 3 below.

(SuBs-SERVICE

The following result says that we can always find a represertéyping for a given process, and,
moreover, we can do so effectively. Such a type is minimumragral assignable typings w.r.t. the
subtyping relation, so that we call it timeinimal typingof a given term.

CONVENTION 5. Atypingll - M > A is strictif all free identifiers in and A occur in M. We
also writel' M for ' = M > 0, similarly I' Fa P stands fol” Fa P> 0. Further we writel'g < T
andAg < A by extending< point-wise at their service/session channels (for vaealilyping should
coincide).

61

Nta P> 8@A:Q
I,ch:1(8§)a@A Falch(§).Pr> 0

(TINIT-IN)

I, ch:(5a@Bta P> A-S@A: a
I, ch:(3a@B t-p ch(v§).P> A

(TINIT-OUT)

KCJ sef FExj:8j THaPj>A3@A:q;
[s> Zjop;j(xj).Pj > A-S@A: Zkek Skopx (6k) - Ok

(TBRANCH)

jeJCK Tre:Var(§) IFaP>A-S@A:Q;
I A S<opj(e).P > A-S@A: ZickS T opc(Bk) - ak

(TSEL)

FEaXx:0 THe:8 TEaAP>A

TASSIG
(IGN MFax:=eP>A

M-e:bool THAP>A THAQDA FTFAP>A THAQD>A

(T1F) [Faif ethen Pelse Q> A (TSUM) — 5 ara

(rPar) AP DrAklA Pr| Z\ DQA>1 <A92A2A1 =

(TRest) L Ao aeg T (RS2t apra

(TVAR) m (TREC) %

(TINACT) FEa0s 0

(Wenkeeng) T FAPEA (0@ =0\ TEAPEA (80(@) =0

A P>A8S@A: end FrFaAP>AS: L

Fr-AP>A T-o@A
(TPARTICIPANT) ATP o@

AP >A
FENiAT THENoD> Ay A<Dy

TPAR-NW
() F}—Nl\N2|>A1®A2

FrEM>A§SSH: L FrEMpAe: L
TRES-NW,1 : TRES-NW,2) ——MM——
(TRESNW.) VMo a 55 1 (ReSNWY ———5—
(TINACT-NW)

MrM-ex0

FrEM>A {8 nfa(A) =0

WEAK-end-NW
(WEAK-en) T Mo ASOA: ond

FEMeA {8 nfa(A) =0

(WEAK-L-NW) FEM>AS: L

FIGURE 22. Typing Rules for End-Point Calculus

62

DEFINITION 5 (Minimal Typing). Assume M is typable. Thdmy - M > A is the minimal
typing of M if, whenevel” - M > A is strict, we havd g < I andAg < A.

PROPOSITIONY. (existence of minimal typind)etlo - M > Ag be the minimal typing of M.
Thenl g andAq are algorithmically calculable from M.

Proof. This is the standard result in session typing systeb®@ [For reference, Figure 23
gives the derivation rules. The rule uses the lukcf. Definition 3) in (MTINIT-OUT), (MTIF),
(MTSuM) and(MTPAR). In (MTINIT-IN), the expression[end/T] denotes the result of substitut-
ing end for each (free, by bound name convention) occurrence of gpiables fromi. v denotes
taking the join with respect to the subtyping ordering.is taken so that an output tygeand an
input type can be coherent in the following way:

al < p! — a=<p
(note this means has more branches thnat each input point). Similarly for the service typing.
Composition® at service typing then always preserves the input side ofythiag, i.e. assuming

al =BT, we have
def

1(9ae29B £ 1(§a (a=<p)
For (MTREC), as we discussed in the proof of Proposition 5 (page 48, @et0.4), the expression

solve(t,A)

denotes the result of calculating the proper recursive (gpappropriate substitution) which follows
[18] (which is simpler than the standard constraint solvingdiancipal types for recursively typex
calculus|L6, 26 because of the lack of channel passing). The expressiomegtfor each component
§ : a; of A, eithers : rec t.a; whent does exist ing; or, if not, § : aj[end/t]. That the given
system derives the minimal typing is by induction on the mgpiules, comparing each rule with the
corresponding one in Figure 22. O

REMARK 3 (principal typing). The minimal typing of a typable netwfprocess is determined
uniquely up to the standard isomorphism on recursive typkesvever this minimal typing magot
be a principal typing, in the sense that even if we HaveM such thaf” is minimal, and if we have
I < I, it may not be the case we hale- M. This is because of the lack of syntactic subtyping at
service (replicated) channels, as discussed in Remarlg®, @ By adding SuBs-SERVICE) noted
in Remark 2, each typable term has a principal typing.

We next prove the central property of the typing rules, thgjett reduction.

LEMMA 2. (substitution)
(1) KT = A[Plg> AT EX@A:8andl-v: 6, thenl” = A[P]g,, > A.
(2) BT, X:A+FaP>A andl Fa Q> A, thenl F P[Q/X] 1> A.

Proof. Standard. See Appendix B. O
LEMMA 3. (subject congruencd)” - M > Aand M= N thenl" - N > A.
Proof. Standard. See Appendix B. O
THEOREM2. (Subject Reduction)f ' = N>A and N— N’ thenl” - N’ > A,
Proof. By Lemmas 2 and 3. See Appendix B. O

DEFINITION 6 (Communication Error). We say has acommunication erroif either:
M =G s> Zjopi(%).R[S<op(.)Q] s.t. op & {opj}
or
M = C;[A[s>> Zjopj (X).P[Ro[B[S<op(.)Q|Fc] s.t. op ¢ {opi}.
or
M = G [A[si> Ziop; (X").P|Rlg|B[3<10pi(.)Q|Fa] s.t. op ¢ {op;}.
whereC] | is a reduction context (i.e. a context whose hole is not uadgeefix).

63

M 7" P> §@A:a T exhaust type variables .
I,ch:!(§alend/t|@A FRIMIch(§).P > 0

(MTINIT-IN)

rmin P> A-S@A: B

(TN OUT) o & (B)@B ™ chvd P o &

r,ch:2(9a@B Fin P> A-5@A: B
I, ch:2(§)(avB)@B " ch(vs).P > A

(MTINIT-OUT2)

sef TEx:0; IHER" P> A-5@A:qj

MTBRANCH .
() [Fmin 51>Z,-opj(x,-).Pj > A-S@A: Xjci5op;(0)).0j

r-e:Var(6) I FI"P>A-S@A:qj
M -7 s<opj(e).P > A-3@A: Zjcys T op;(0)).0

(MTSEL)

FFax:® TFe:® TER"PE>A

(MTASSIGN) :
FrEAM x:=ePr>A

Fi-e:bool T FTMP>A (i=1,2)
F1VIp FRinif ethen Pelse Q > A VA,

(MTIF)

MR R 4 (i=1,2)
MV FRN PLa Py > AV A

(MTSum)

FERNPEA TERNQE Ay M =<y

(MTPAR) -
Fivi FY PIQ > A1 04

RN P>A§5%: L
MEpn (vs) P> A §%: L

FERnP>Ae: L
rHoin (vs) P> A

(MTRES,1) (MTRES,2)

MX:tFRin P> A

(MTVAR) w—{S8} (MTREC) —
I =X rec X.P > solve(t,A)

FX ot Hoin X o> Ui§ ot

(MTINACT) : llJ:{S}~
OFR"™ 0> Ui§ i end

r-pnPeA I'-o0@A
rEmin ATP] > A

FE™N N> A (=12 A=A
I =min Ny N2 > A O

(MTPARTICIPANT) (MTPAR-NW)

rEmn M Ae: L
rEmin M > A

FEMrM A $§s$H: L

MTRES-NW,1 -
(’)F}—m'" VS MDA §SH: L

(MTRES-NW,2)

MTINACT-NW) ———
() rEmnegx>0Q

FIGURE 23. Minimal Typing Rules for End-Point Calculus

64

That is,M has a communication error when it contains an input and apubat a common
channel which however do not match in operator names (we wdnef add mismatch in types of
evaluation). A basic corollary of Theorem 2 follows.

COROLLARY 1. (Lack of Communication Error)if ' = N> A and N—* M, then M never
contains a communication error.

Proof. By Lemma 3 and by noting an incompatible redex is not typable. O
Thus once a process/network is well-typed, it never go irtoramunication mismatch.

12.3. Examples of Typed Terms.
ExAMPLE 16. We can now give a possible end-point version of what wesetion Example 11:
Buyer [B2SCh(s) . s<1Request For Quot e . s>> Quot eResponse (Xquote) -
s<1 (Quot eRej ect +
Quot eAccept .s>> Order Confirmation.s<iDeliveryDetails)], |
Sel | er [B2SCh(s) . s> Request For Quot e . s<1Quot eResponse (Vquote) -
s> (Quot eRej ect +
Quot eAccept .s<1Order Confi rmation.S2Shch(s).
§ <Request Del Det ai | s (Buyer).s<1Del i ver yDet ai | s(xpp)
st>Del i veryDetails)]g |
Shi pper [S2ShCh(s).s > Request Del Det ai | s(xq i ent) - S<1Del i veryDet ai | s (DD)],

Itis simple to verify that the typing we gave in the previoestion for the global view of this protocol
is just good enough for typing the network above.

65

13. Theory of End-Point Projection (1): Connectedness

In preceding sections, We have presented many examplefispions both as a global view
in the global calculus and as a local view written in the endpcalculus. In doing so, we always
introduced a global description first, and from that one waovered the corresponding end-point
processes. From an engineering viewpoint, these two steptaft-from a global description, then
extract out of it a local description for each end-point —eoffin effective methods for designing and
coding communication-centric programs. It is often simgpain to design, implement and validate
an application that involves complex interactions amongcesses and whictogether work cor-
rectly, if we are to solely rely on descriptions of local behavioudrhis is why such tools as message
sequence charts and sequence diagrams have been usedraarg piy to design communication
behaviour. In fact, the primary concern of the design/rezgqaent of communication behaviour of an
application would in general be how global information exege among processes will take place
and how these interactions lead to desired effects: thé beteviour of individual components only
matter to realise this global scenario. Thus, in designimdyinplementing communication-centric
software, one may as well start from a global descriptiorxpeeted behaviour, then translate it into
local descriptions. How this can be done generally and umiffip with a formal foundation is the
theme of this section, studied in the distilled setting @f tlvo calculi of interaction.

Translating a global description to its end-point courgerpthe process calleehd-point pro-
jection, can however be tricky, because we can easily produce alglelsaription which does not
correspond to any reasonable local counterpart. In othedsyd you do not follow good principles,
our global description doesot in fact describe realisable interaction. But are there gan@inci-
ples for global descriptions which guarantee any globatieson be uniformly mapped to correct
end-point behaviour as far as it follows them? Such primsghould not be too restrictive, allowing
projection of a large class of global descriptions ontortké#icient local realisations.

In the context of the core calculi we presented in this paperhave identified three simple
descriptive principles, whose technical examination ésghrpose of the present section. These are:

e Connectednessvhich says a basic local causality principle is obeyed ifoha descrip-
tion.

e Well-threadednessvhich says a stronger locality principle based on sesgipest

e Coherencewhich specifies, on the basis of well-threadedness, demsig of description
for each “service”.

All these principles are stipulated incrementally on theibaf well-typedness: well-threadedness
does not make sense without an interaction being conneatedicoherence can only be defined
for well-threaded interactions. These three conditionsardy offer natural disciplines for well-
structured description, but also they offer gradually deegalysis of operational aspects of global
description. Connectedness uncovers causal relatioagimng actions, on whose basis well-threadedness
dissects how we can extract atomic chunks of local act&ifgalledthread$ from a global interac-
tion, crucially using the underlying type structure. Cahrere stipulates the condition under which
these threads can be formed and combined to produce a whudwiber of each participant. The
resulting participants can now realise, when combinedtt@geall and only interactions prescribed
in the original global description. Thus by way of offeringpeecise analysis of the conditions for
local projectability of a global description, these thremgiples let us arrive at the construction of a
formally founded end-point projection. Descriptive piiples are by themselves structural analysis
of the operational content of global descriptions, leadimghe function which maps them to the
corresponding local descriptions.

13.1. ConnectednessConnectedness dictates a local causality principle irraoteon — if
A initiates any action (say sending messages, assignmerds .a result of a previous event (e.g.
reception of a message), then that preceding event shdigtace a. For example, consider:

(74) A—B:s(opy, €1, y1).C—D:(op2, €, y2).0.

Following the dynamic semantics of the global calculustehe first an execution of the interaction
betweenA and B and then an interaction betweénand D takes place. For implementing such a

66

sequence of interactions in a distributed setting, we neg@dden notification message frofto C.
That is. (74) does not describe all of the communication eegess needed to realise the demanded
sequencing. So (74) is an incomplete description of comaatioin behaviour. This is why we wish
to avoid e descriptions violating the local causality pifte such as (745.

To formalise the local causality principle informally dissed above, we need to say which
participant initiates an action il this participant should be the place where the precedimgtev
happens. This notion is defined as follows.

DEFINITION 7 (initiating participants). Given an interactiorin which hiding does not occur,
its initiating participants denotedop(1), is inductively given as follows.

(A} if 1 ¥'A . B:chvg).I’
(A} if 1 €'A B s(op, & x).1
{A} if 1 2'if e@A then I1 else I
{A} if X@A:=e.l’

top(l) %" ! (A} if | %A
0 if 1 €0
top(l”) if 1 ©'rec XA.1/
top(l1) Utop(lz) if 1 €11 |1,
top(l1) Utop(l) if I d:ef|1+|2

If A€ top(l), we sayA is aninitiating participant of I.

REMARK 4. By Convention 1 (cf. page 33), it is natural to restrict cemed interactions to
terms without restriction.

Givenl, the functionop generates a set of participant. The generated set contt@pstticipants that
initiates the first action df (note we count “sending” actions, which are session initreand sending

a message, as “initiating” actions, but we don’t do so fordbeesponding receiving actions: as we
shall analyse later in Section 13.2-13.3, this is the mdstisboption, though there are alternatives).
The annotation for a term variabla for XA, has now revealed its role, as a signifier of the initiating
participant of the behaviour embodied Ky We discuss how this allows validation of connectedness
in the presence of recursion. We now present the inductifiaitien of connectedness.

CONVENTION 6 (well-typedness). Henceforth we only consider well-typerms for both
global and local calculi, unless otherwise specified.

DEFINITION 8 (Strong Connectedness)The collection ofstrongly connected interactioase
inductively generated as follows (considering only wglied terms, cf. Convention 6).

(1) A— B:ch(vs).l’is strongly connected whehis strongly connected anap(l') = {B}.

(2) A—B:s(op, e X).lis strongly connected when | is strongly connected apdl) = {B}.

(3) if e@A then |1 else | is strongly connected whem, ll; are strongly connected anth} =
top(l1) = top(l2).

(4) 11+ 12 is strongly connected whep, Il are both strongly connected afé\} = top(l1) =
top(l2).

(5) rec XA.1" is strongly connected whefd} = top(1’).

(6) XA is always strongly connected.

(7) x@A:=e.l is strongly connected whehik strongly connected anfiA} = top(l’).

(8) 11 12 is strongly connected when bothdnd b are strongly connected.

(9) (vs) Iis strongly connected when | is strongly connected.

(10) Ois always strongly connected.

8We can of course insert additional communication missiognfi(74). But this is precisely we need a
principle dictating when such an insertion is necessaryhavdthis may be done.

67

Note strongly connected implies well-typed. Strong comedeess says that, in communication ac-
tions, only the message reception leads to activity (ateheiving participant), and that such activity
should immediately follow the reception of messages. Vasiaf the notion of connectedness (which
loosen some of the clauses of the definition above) are disdus the next subsection. Among oth-
ers the following variant allows an identical technical el@pment as the notion presented above
while useful in various examples.

As we shall discuss in the next subsection, there are moetoeariants of connectedness
which can be used in its place, allowing all the remainingthéical development to go through.
Strong connectedness is chosen since it allows a most aeergptheoretical development. Further
we can often encode descriptions following looser priresplising strongly connected interactions
preserving semantics.

The defining clauses of Definition 8 should be naturally ustierd. We only illustrate the
treatment of recursion. Given a recursi@t X”. |’ and its operational semantics (cf. Section 10.3),
each occurrence of the term variabfecan be seen as a link back to the beginning of recursion,
i.e. the recursive terrec XA I’ itself. This view suggests that, for guaranteeing conmbss, we
need to make sure that the action preced{rghould be connected to tlheginningof the recursion,
i.e. the initiating participant of. For this to happen, we first annotaXewith A, by which we can
statically check its preceding event happen#étdhen we demand’, the body of recursion, does
indeed start fromA. This justifies the participant annotation on recursionalzes.

Below and henceforth we assume well-typedness (i.e. waraslsy are well-typed]; is typed
under a base including®, and that substitutidip /Y B] is well-typed).

L EMMA 4 (Substitution).Let l; and b be strongly connected andp(l2) = {B}. Then i[l>/Y®]
is strongly connected andp(l1) = top(I1[l2/YE]).

Proof. By induction on the structure df.

e Induction baseWe do case analysis of.
— 0. Immediate.
— XA, Immediate ifX # Y; by induction if XA = YB,
e Inductive casesWe again do case analysis af |
— A— B:ch(v§).l. By induction hypothesisi[l,/YB] is strongly connected and
top(I[l2/YB]) =top(l). Hence1[lo/YB] is strongly connected. Sineep(l1[l2/YB]) =
{A} = top(l1) we are done.
— A—B:slop, & y).I,x@A:=e.l,| |I',ife@Athen Iy else I, 11+ 12, (vs) I. All
immediate from induction hypothesis.
— recX”.1. By the bound name convention we can assi¥eY. Hence(rec XA .1)[l/YB] =
rec XA.(112/YB)). Then we use induction hypothesis. O

LEMMA 5 (Subject Congruence: Strong Connectedneks).l; and b be two interactions. If
I, =1, and | is strongly connected then iIs strongly connected.

Proof. We can show that this holds for all cases:

o (V) I|[I"'=(vs) (1|1 (if 5 & fn(l")). Trivial.
e (Vs) (vS) I =(vs) (vs) I. Trivial. O

THEOREM 3 (Subject Reduction: Strong Connectednedsgt | be strongly connected ara
be well-typed. Theto, 1) — (d’,1’) implies I is strongly connected.

Proof. By induction on the reduction rules.

e (INIT). Inthis case we have théd, A— B:ch(v§).l") — (g, (v§) I"") and by definition of
strong connectedness we have that it is connected wheHeigstrongly connected and
top(1”") = B. Moreover,(v§) " is strongly connected whenevétis strongly connected
which concludes this case.

68

(Comm). By applying the rule, we gdio,A—B: s{op, €, x).1) — (d’,1) if and only if

o e@A | v. By definition of strong connectednelsis strongly connected.

e (AssIGN). This rule states thdo,x@A = e.l’) — (d’,1"). By definition of strong con-
nectedness we have tHais strongly connected.

e (IFTRUE) and (IFFALSE). We have thafo,if e@A then |1 else |2) — (o,1) and by defi-
nition of strong connectedness we have thatl; is strongly connected.

o (PAR). We have(a,ly | 12) — (0,11 | I2) inferred from(o,11) — (0’,17). By definition
of strong connectedness andl, are strongly connected. By induction hypothegiss
strongly connected. Again by the definition of strong cotieeoess’ =11 | I, is strongly
connected.

e (RES). Immediate from induction hypothesis and definition obaty connectedness, as
above.

¢ (REC). We have(a,rec X.1) — 1’ from (o, 1[(rec X.1)/X] — I’. By Lemma 4] [(rec X.1)/X]
is strongly connected. By induction hypothesis sb iglone.

e (STRUCT). By Lemma 5. O

Strong connectedness (as well as its variants) imposesraygtructural constraint on the shape
of interactions. One such consequence is the followingrebtien. Intuitively it says that, in each
thread of interactions, there is always one single paditipeady to perform any operation that is not
an input; while the remaining participants are waiting foput. At any stage of a thread of activity,
there is only one participant performing any operation mat smput. On the contrary, the rest of the
other participant are all performing an input.

DEFINITION 9 (Input-Output Form).Let T - | > A, assume that | structurally equivalent to
5iA—B:s(op;, &, X).ljor A— B:ch(vs).l” and consider the tree generated by unfolding recursion
occurrences. | is innput-output formwhenever for all £ A, C occurs in each path (towards the
leaves) first as a receiver, then zero or more ifthenelségasgents and then as an output.

LEMMA 6. Iflis structurally equivalent t&;A— B: s(op;, &, X} .l or A— B:ch(vs).l” and,
moreover, it it is strongly connected, then | is always inuaputput form.

Proof.Direct from the definition of strong connectedness.
We shall use this observation during our next analysis, iithvive extract true units of activity from
a global description.

13.2. Further Examination of Connectedness (1): Input and @tput Asymmetry. In strong
connectedness, we regard only a sending action to be ftingia Some observations on this point
follows.

First, for session initiation actions, this is a naturalicko The typing of the end-point calculus
is based on the idea that a service channel should alwaysdilatde: in such a setting, the only
feasible choice for guaranteeing the sequencing as sgkoifie global description is to use only a
sending party as the one who does an action.

Second, for in-session communication actions, we can thaée&p the inputting party and
outputting party as an “initiator” of sequencing, at ledsdretically. For example, compare the
following two interactions. The first one is strongly contest

X@A = 3.
(75) A—B:s(op).
while the second one uses the reverse sequencing.

X@A:=3.
(76) B—A: s{op).

By a close look at (75), we observe the following assumption:

69

In the second actiorB should already be ready to receivesawhile A will
just at this second stegoes the sending action.

Note that, in this assumption, we aret demanding a strict sequencing in the inputting side: rather
it is in the outputting party which takes responsibility e timing of this communication action.
It is not feasible to demand both parties should make reagly tbomplementary actions at the same
time.
If we are to allow (76) and to have local processes obey theritbesl sequencing, the assump-

tion would be:

In the second actiom should already be ready to send (or have seng at

while B will just at this second stdgecome ready to receive an action.

Note this argument for “sequencing by input” holds even ia tlontext of asynchronous commu-
nication (either the pure one or the one with arrival ordemdeterminism). However (76) isot a
good discipline, simply because, when a participant is isgndt should first create a datum: and
this may as well be done as the result of the preceding eveheaender side, not at the receiver's
side. From this viewpoint, (76) neglects a hidden causaliltyciple for message creation, and may
not be a practical choice.

These arguments suggest our assumption that it is a serider than a receiver who realises
a sequencing is a natural idea. We next discuss two basiamarof connectedness based on this
understanding of sequencing.

13.3. Further Examination of Connectedness (2): VariantsfoConnectedness.

r-Strong ConnectednessStrong connectedness robust with respect to asynchrony of mes-
sages, i.e.even if we assume all messages are sent asymeigoim end-point processes, the princi-
ple still guarantees strict sequencing. Strong conneetihowever is often too strict. For example,
consider the following description:

Buyer — Seller : QuoteCh(vs).
77) Buyer — Seller : s(RequestQuote, productNamex).
Seller — Buyer : s(ReplyQuote, productPrice y).0

Here a Buyer requests a Seller to start a session througlviaesehanneQuoteCh, exchanging a
fresh session channgl Throughs, the Buyer request a quote with a product name. The Seller the
replies with the corresponding product prite.

Sending multiple consecutive messages from one party tihanim a session is often found in
practice (in both business and security protocols). Fuiffié) may not violate the essential idea of
strong connectedness both logically and in implementafiiost, it is still a reception of a message
which acts as a trigger of an event in a different participaBecond, we can always send such
consecutive messages in one go, so that it still works inrifrastructure which implements each
message flow by asynchronous messaging (note if we senddresecutive messages separately, we
need to guarantee the order of messages in some way, for whipbse we may use a widely used
transport level protocol such as TCP). We call a refinemerstrming connectedness which allows
such consecutive interactions from the same sender to the seceiver,strong connectedness
relative to repetition, orr-strong connectednessWe give its formal definition below for reference.

DEFINITION 10. We sayl starts from an action from A to Bhenl is prefixed with a session
initiation from A to B or a communication fror to B.

DEFINITION 11 (r-strong connectedness). labeldef:r:strongcondeetes The set afstrong
connected interactionare inductively generated as follows.

(1) A— B:ch(vs).l’ is r-strongly connected wheH is r-strongly connected and either
top(l’) = {B} or |’ starts from an action from to B.

%n practice, one may as well describe the initial “sessidtgition” action and the first RequestQuote action
as one action, as in WS-CDL. One may as well consider (77) egragentation of this idiom in a formal setting.

70

(2) A—B:s(op, € x).l is r-strongly connected whehnis r-strongly connected and either
top(li) = {B} or is prefixed by an action from to B.
For other terms we use the same clauses as in Definition &aiegl “strong connectedness” with
“r-strong connectedness”.

One may note all relative strong connected interactionsbea@ncoded into strong connected inter-
actions. For example, (78) can be translated into:

Buyer — Seller : QuoteCh(Vs).

Seller — Buyer : S(Ack).

Buyer — Seller : s(RequestQuote, productNamex).
Seller — Buyer : s(ReplyQuote, productPrice y).0

(78)

Thus we only have to add one ack between two consecutivenadtiche same directions. For this
reason, in all technical developments which depend on gtommnectedness, we can equally use
r-strong connectedness without any change in essentiafremgts. In particular, the same soundness
and completeness results for the endpoint projection hold.

ConnectednessWe can further loosen relative strong connectedness. F®thing, one may
consider the following description is a natural one.

Broker — Seller : SellerCh(vs).
Broker — Buyer : BuyerCh(v f';s).

(79) Broker — Seller : s(RequestQuote, productNamex).
Broker — Buyer : S (RequestQuote, productNamey).
Seller — Broker : s(ReplyQuote, productPrice 2)......

Here Broker does four consecutive actions which are taggetéwo different participants. Further
this global description specifies, in the fifth line, that dl&Sereplies to a Buyer even though the
immediately preceding action goes to the Buyer. Howevds itatural and easy to consider that
Seller can send its message after the third line, and thiscisived by Broker in the fifth line. The
description still obeys a locality principle, which is ditey realisable in synchronous communica-
tion. It is also easy to realise this idea in asynchronousnsonication as far as message sending
order for each target is preserved (if message order is restepved even for the same participant,
we may still be able to group messages and send them agaireigamaop to a permutation, even
though this becomes complicated if there is a branching¢hvis somewhat similar to permutation
of instructions in pipelining in modern CPUs).

This principle, which we simply caltonnectednesscan be formalised by accumulating po-
tential initiating participants one by one. For examplethe first line, it may well be the case
that Broker is the only potential initiating participant.ftér the first line, Seller joins. After the
second line, Buyer further joins. So in the fifth line, Selban indeed invoke an interaction. Sim-
ply connected interactions again allow the parallel tec&inilevelopment, even though operational
correspondence needs adjustment.

This relaxed variant of connectedness has one issue isdgaencing in a global action may
show false dependengyhen projected onto local behaviour. This means, among®thennected
but not r-strong connected descriptions are in general edittwreaded in the sense we shall discuss
later. In spite this observation, we strongly believe tlgileixed version of connectedness will have
a basic role as a structuring principle of global descripgicon which we are intending to explore
elsewhere.

Other Constructs. By introducing other syntactic constructs such as join apen, the notion
of connectedness can further be refined. As far as such awvariposes a reasonable constraint fol-
lowing a locality principle of actions, we believe the capending principle can be used as a sound
substrate for the essentially equivalent technical dgraknt we shall discuss in the subsequent
subsections.

71

14. Theory of End-Point Projection (2): Well-Threadedness

14.1. Service Channel Principle.With strong connectedness, each interaction is a direct con
sequence of the preceding local event. On this basis, a firadysis of interaction is possible, which
allows us to extract a unit of behaviour acting in a globalcdgsion. This unit is calledhread
which plays a pivotal role in the present theory of endponojgrtion.

Before introducing the notion of threads, we first illusérane subtle point in the way service
channels (which act as initiating points of sessions) gpeesented in the end-point calculus using
an example. Consider the following global description:

A— B:chg(vs).
B — A:chy(vt).

A—B:t{op1, V1, X).

B—A:s{op2, V2, y).0

(80)

First we haveA askingB for service (sessiomhg, thenB askingA for servicecha, thenA replying

to B with a value on session namébelonging to sessionohs) and finallyB sending toA a value
using session name(belonging tochg). Now consider the following naive implementation of the
interaction above as communicating local processes, $mmy®nA.

(81) Al chg(vs).Icha(t) . T<op1(v1).SB>op2(y).0 g,

The local description (81) directly translatas portion of (80), whereA first asksB for service via
chg, then waits for somebody (heB) to ask for its own serviceha, then sends a value ® over

t, and finally waits for a value to be sent owrls this a faithful way to represent the behavioural
content of (81)?

Suppose another client wishes to use a service availaltlezatThe projected behaviour (81)
indicates that this service eliy becomes available only whéxfinishes an interaction ata, which
makes availability of service &ha dependent oi’s action (the issue becomes worsdiivaits for
B’s reply before offeringcha).

Generally, in our formalism and in web-service languageh a1 WS-CDL, a channel used for
initiating protocols gervice channelis our formalism, initial channels for starting choreodnés/sub-
choreographies in WS-CDL, which may as well be public URLs)iatended to be repeatedly in-
vokable and be always available to those who know the poresaim fact, in the standard practice
of web services, a service is embodied by a shared chann#ie fiorm of URLs or URIs through
which many users can throw their requests at any time (suaifadmlity at shared ports is maintained
as part of the standard notion of “service” in a service-dds@mework going beyond web service).
This is why the construction of services as found in (81) kaknatural: a service channel should
always be available to clients who know its URL. This may biéedaservice channel principle

In the engineering context, a basic form of service chanriatiple can be found in RPC and
RMI, and its web-service embodiment such as SOAP. In theegbwif thetr-calculus, this notion
is representable as a replicated input who is “receptive®ifgput ready”). We can easily enforce a
more refined discipline so that we can guarantee input schannels to be never under prefix in
the typing for the end-point calculus. If we do so, (81) beesrantypable.

We now present the local representation of (80) which indd®ys the service channel princi-
ple. First we have the following local code fAr

(82) Al 'cha(t)f<opi(va).0 | chg(vs).s>opa(y).0 g,
ForB we have:
(83) B[!chg(s).cha(vt).t>op1(x).3<0p2(V2).0]g,

By tracing reductions of the parallel composition of (821§83), we can check the interaction does
proceed faithfully following (80).

72

14.2. Motivation: False Causality in Global Description. We are now ready to illustrate the
notions of threads and well-threadedness. Consider thewiolg global description:
A— B:chg(vs).
B — C:che(vt).
C— A:cha(vu).
A—B:s{op, v, x).1.

(84)

Note the description is strongly connected. However wentthis description is not well-structured,
and is impossible to be faithfully realised as reasonabtepmint processes.

Let us examine the behaviour Afdescribed in (84). Following the service channel pringiple
we can observe the behaviourdhas two different chunks of code, which we (first informalcgll
threads. The first thread starts a fresh session by invattiggn B, and sends a value ®overs.
The other thread is the one which provides the serviceligwhich may be realised i). Thus the
local behaviour may be represented as:

(85) Al !cha(vt).Pa | chg(vs).3<0p(V).Qa g,
In the same way, we may consider the following local impletagon of B.
(86) B[chg(s).chc(vt).t>op(X).Ps g,
Finally, let us conside€’s end-point view:

(87) C[che(t).cha(vu).Pe g,

Let us now see how these process interact. AStasksC for servicechc, the processr> op(x) . Pg is

free to react with the terre<iop(v).Paz in A, even befor€ has interacted witi's other component.
Can we change the local behaviours (85, 86, 87) so that it czsigely represent the original

global behaviour (84)? We reason as follows.

(1) The service channel principle says that the chadnelis replicated and is ready to receive
an invocation.

(2) Now the session channels initiated by a thread & which is not under cha (since if it
is undercha, how can it be the initial move?).

(3) But for an action asto take placemmediately after invocation at ghit should be under
cha, a contradiction.

Thus we concludét is impossible to impose the global sequencing stipuldgl by well-typed
local behavioursThis means (84) describedadse dependency (sequentialisation) among actions
which cannot be realised by well-typed local interactiofisis examples motivates the main theme of
this section, the descriptive principle calleell-threadednesswhich automatically prevents such
false dependency from appearing in global description. Mfeduce this notion formally in the next
two subsections.

14.3. Annotating Interactions with Threads. Let us come back to the first global description
(80), which we found to be realisable by end-point procegsem in (82) and (83). Let us analyse
these few lines of global description (80) informally, reguced below.

(1) A—B:chg(vs).

(2) B— A:cha(vt).

(3) A—B:t{op1, V1, X).
(4) B—A:s(op2, Vo, ¥).
(5) 0

The initial interaction in Ling1) is initiated byA, which is an output (session initiation)Bis service
channelchg: dually the interaction is an input (reception of a sessiuotiation) for B at chg. Then
in Line (2), B reactsby an interaction, again with, but which is now an output fd8 and which is
asession initiatiorat A’'s service channatha. Dually it is aninput actionfor A, receiving a session
initiation at its owncha. For A, this input is donéndependently from the initial output actiam (1).

73

At this point we realise that, i2) above,because B’s output action is a reaction to its own
previous input actionthe former and the latter should be in the same “code”: wiesagh a causally
connected sequence of actions of the same participahtead. Up to (2), we have the following
three threads.

Thread 1: which is inA, containing its invocation athg, opening a channel
Thread 2: which is inB, containing its reception of the invocation above (opersnand its
subsequent invocation aha (openingt).
Thread 3: which is inA, containing a reception of invocation et (openingt).
Note Thread 1 and Thread 3 aseparate threadswhenever a new invocation of a service (or a new
session initiation) is done, this creates a new thread aettedving, or service, side.

We continue our analysis. In Lin@), the output ofA is reaction to its previous input, soitis in
the same thread as the latter, i.e. Thread 3. Since it useg#iséon channélopened byA in Thread
3 (in Line (2)), this action should be in Thread 3. The same interactiohethird line is an input
for B, which should be Thread 2, because it usepened in the initial action of Thread 2. In Line
(4), B reacts by an output action at Since this is opened in its Thread 2, we know this actio®by
should be in Thread 2. Similarly, the dual input actionfdghould be in Thread 1 siness opened
in Thread 1 forA. In Line (5), we have no more interaction, concluding the analysis.

As a summary, there are three threads as a whole, twA ford one foB. In A, we have one
thread (Thread 1) starting from an output and another (th8avhich is a “service” starting from
input at service channeha: this is precisely the processes given in (82), reproduetoa

Al 'cha(t)T<op1(v).0 | chg(vvs).s>opa(y).0 g,
Similarly there is one service iB, Thread 2, as given in (83), reproduced below:
B[!chg(s).cha(vt).t>op1(x).3<10p2(V2).0]g,
Thus extracting “threads” (in an informal sense) from a gladtescription has led to obtaining local
behaviours which faithfully realise it. The analysis of dcausality based on threads based on

session types is the main focus of the following discusside. first start from annotating a global
interaction with a notion of threads.

DEFINITION 12 (Annotated Interaction). Thread annotated interastion simplyannotated
interactionswritten 4, 4’, . . ., are given by the following grammar.
a4 = A" —-B@2:ch§).4
| A"—B@2:s(op, e Vy).4
| x@A":=e.Z
| if e@A" then 4, else 4,
| A+ A,
| Al 4
Xt
| rec™xA.a
| O
where eaclt; is a natural number. We catl,T’,... occurring in an annotated interactiothreads
Further the grammar oéxtended annotated interactiors ,, are given as:
E = 4 | E|E | (VE
Hereafter we let4,4’,... range over extended annotations by abuse of notations, iamalyscall
themannotated interactions

REMARK 5. If parallel composition is under prefix, both should anyvsaare the same initi-
ating participant: thus only top-level threads may havéediit threads, which extended annotated
threads represent. For restriction, note it can only oceiside of prefixes by Convention 1.

74

An annotated interaction annotates each node of an absymateix tree of a term with threads, which
are given as natural numbers. For example, (80) is annogatefdllowing our previous analysis:
Al - B?:chg(s).
B2 — A3:cha(t).
A3 B2 :t(opy, Vi, X).
B2 —Al:s(op2, Vo, ¥).0
But we can also annotate the same global interaction withe@nisistent annotation:
Al - Bl:chg(s).
B2 — Al:cha(t).

which does not make sense.

14.4. Well-ThreadednessAs we have just seen, a thread annotation may or may not make
sense. How can we find a consistent way to annotate an iritaragith threads? By our previous
analysis, we need to stipulate whether the causality spdcgiobally can be precisely realisable
locally.

We fix some terminology. Regarding eag@has an abstract syntax tree, it hasomstructorat its
root (say prefix or parallel composition), which is annothly either one thread or, if it is initiation
or communication, an ordered pair of threads (the first fordee the second the receiver). Above
the constructor, it has idirect subtree(s)each of which is another such abstract syntax tree. Each
(possibly indirect) subtree of is dominatedcby each of its (direct and indirect) proper subtrees.

DEFINITION 13 (Basic Terminology for Threads).

(1) If the root of 4 is initialisation/communication frorB to C and is annotated bft1,12),
thenty (resp.tp) is theactive thread of2 by B (resp. thepassive thread off by C). If
the root of 4 is other constructors, then its annotatiors both its active thread and its
passive thread.

(2) If 4’ occurs as a proper subtree @f then (the root of)4 is apredecessoof (the root
of) 4’. Symmetrically we definsuccessoar A direct predecessor/successisra prede-
cessor/successor which does not have no intermediateqassi®/successor.

Note if the root of 4 is a predecessor of that of’, then the former's execution should indeed
temporarily precedes that of the latter.

DEFINITION 14 (Consistent Thread Annotation). An annotated stronghnected interaction
4 is globally consistenif the following conditions hold for each of its subtreesy s&.

(G1) Distinctness/Freshness Conditionif T is by A at some node and [Bat another node
thenA andB always coincide. Further Ifi’ starts with an initialisation, then its passive
thread should be fresh w.r.t. all of its predecessors (i any

(G2) Session Consistencyif 2’ starts with a communication betwe&mandC via (say)s
and another subtre@” of 4 starts with a communication vigor an initialisation which
openss, then the thread b (resp. byC) of 4’ should coincide with the thread &
(resp. byC) of 42",

(G3) Causal Consistency:If 4" is the direct successor of, then the active thread o1”
should coincide with the passive thread®t

A thread annotated interaction liscally consistentif it is globally consistent and if the following
conditions hold for each of its (possibly indirect) subtee
(L) Local Causal Consistency: Suppose?’ is a supertree afl and.4 is an initialisation or
a communication, similarly fora’. If both containt and, moreover/4 is the first such
subtree of2’, then ifT is passive by (sayB thent is active byB and vice versa.

(G1) says that a thread should always belong to one participadtiteat a fresh thread starts
when a service is invoked(G2) says two distinct interactions in the same session (whieh lay

75

typing, always between the same pair of participants) shbalgiven the same threads w.r.t. each
participant, note ifA is present this gives a grouping of free session channelshwiill later be
abstracted by an initialisation action: note also, by Psitin 2, the grouping of session channels
in A is arbitrary). (G3) says ifA has an input annotated as a (passive) thread then its imtelgdia
following output should be annotated by the same (but thig tactive) thread?

(L) is a significant condition which is about local causality. s#tys that, within the same
thread going through an interaction, a participant acts $triatly alternating fashion in initialisa-
tion/communication action. To illustrate this condition, let us go back to our initiakenple:

A— B:chg(s).

B— A:cha(t).
A—)B:t<0p1, Vi, X>.
B—A:s{ops, V2, ¥).0.

We notice that it works just because for each session, eagloflmformation from one participant to
another is always followed, if any, by an opposite flow of imfiation, e.g A starts sessioohg with
names thenB replies toA on s. If not, the causality depicted in the global description caver be
realised locally. Thu¢lL) embodies the condition which is the key to local realisabidf causality
in a global description. Somewhat surprisingly, globalgistency implies local consisten&.

ProPOSITION1O0. If 4 is globally consistent, then it is also locally consistent.

Proof. (outline) Suppose there are two separate input8 Bgnotated by the same threadnd
for which there are no intermediate actions annotated @ifat is, we have two consecutive inputs
within the same thread which are temporarily separated}.tiis is impossible since immediately
after the first passiva, this should lead to its active occurrence in the directraaytwhich contra-
dicts our assumption. Symmetrically suppose there are gparate outputs bB annotated by the
same thread and for which there are no intermediate actions annotated(that is, we have two
consecutive outputs within the same thread which are teaniyseparated). But this is impossible
since immediatel\peforethe second active, this should be preceded by its passive occurrence in
the direct supertree. O

DEFINITION 15. We sayA is consistentf it is globally consistent or, equivalently, if itis lodgl
consistent.

We can now define well-threadedness. Below we gaig an annotation of when the result of
stripping off annotations fronfl coincides withl .

DEFINITION 16 (Well-Threaded Interactions). A strongly connecteantéris well-threaded
when there is an annotatiom of | which is consistent.

Note well-threadedness implies strong connectednesséhgeall-typedness). In the next subsection
we introduce the type discipline which type all and only wiblleaded interactions, via consistent
global and local annotation.

REMARK 6 (Annotations following Session Typing)t is natural to consider a consistent an-
notation which conforms to the grouping of session chanmetbe session typing. Suppdse 1 >A
and 4 is an annotation of I. Then we may demand, in additio(@a..3), the following extension of
(G2): whenever two communication actions by the same participeaurr via respectivelg; ands,
and ifs; ands, belong to the same type assignmenfjrthen these two actions should be given the
same thread.

19 we are to work with r-strong connectedness in Section 1tBi&n (G3) should be refined so that if two
consecutiveA to B actions are given they should be annotated by the same thread

14f we are to work with r-strong connectedness in Section 1Bén(L) should be refined so that we treat
consecutiveA to B actions as a single chunk.

12This result is related with what is called “switching comalit’ in game-based semantics.

76

14.5. Examples of Well-Threaded Interactions.It is important to understand now what is
the connection between an interaction and its annotatioorder to give a sound and deterministic
correspondence, we define a function which annotates aitens. \We now try to explain the rules
of the typing system. Consider the following interaction

A—B:chg(s).
B—A:s(op, € X).
(A—C:che(t) | A—B:s(op, € X))

If we now consider its implementation in the local calcules@ding to our discussion above, we
would get for somey

Alchg(s).s>op(x). (che(t) | s<op(e))}GA
B[! chg(s).s<1op(e). s> 0p(X)]g,
Clliche(t) g,
If we now start talking about threads we notice that goingtigh each action we must take a choice

whether to start a new thread or continue a previous one. rlatg to the translation we gave into
the end-point calculus we can think about the following dation:

Al — B?: chg(s).
B2 —Al:s(op, e x).
(A - C3:che(t) |F A —B? : s(op, e X))

We now show another case where we also include recursionhariéithen else construct. Consider
the following interaction

A—B:chg(s).
rec XB.B—A:s(op, e x).XB

Without going into the details of a possible end-point repreation, it is clear that here is a problem
with the notion of well-threadedness. In fact, affestarts the sessiothg, B continuously sends

to A on session name This goes against our notion of well-threadedness. We ddragurther
interaction betweeA andB to remedy this issue:

A—B:chg(s).
recXB.B—A:s(op, e X).
A—B:slop', €, y).XB
The following annotated interaction, which is well-threddis an example of parallel composition.
Al — B? :chg(s1,).
(B2 > C3:che(t).C3—B?:t(..)B2 AL s () |2
B? —C*:chi(t)).C*—B2:t(...)B2— Al : 55(...))
Note that, after the thread 2 is passive in the initial agttbis in turn becomes active in both com-

ponents of parallel composition. In this way, a prefixed palraomposition should always have the
common initiating thread. For a top-level parallel comgiosi, this does not have to be:

C3-B2:t(..)B?—AL:s(...) |
B? - C*:cha(t').C*—B?:t(..)BZ2—Al:5p(...))
which is the result of reducing one interaction from the prag one and which is still well-threaded.

77

0,11 :SU{§},12: {8} A4 topT(4)=12
0,11:5 12: 0 A1 - B2:ch(§).4

(WT-INIT)

O0,11:9,12:SFA topT(A) =12 SESNS
0,11:9,12: S FAL—B2: 5(op, € x).4

(WT-ComM)

OF4 topT(4)=1

(WT-ASSIGN Or @A —e.4

OFZ topT(4)=T1

WT-IFTHENELSE
() O+ if @@AT then A, else 4

O+ 4 topT(&)=1

(WT-Sum)

OF 214" 2
Or % topT(A)=1 (=12
WT-PAR
() OF 4, |T A
OF%F
WT-PAR-EXT) ————
() O+ E | E

0,11 : S W{s}, T2 : SWU{s}-E
0.11:5,12: S ((vs))E

(WT-RES-EXT)

© well-formed (WT-REQ) 0,X:0F A4 topT(4)=1
O,X:0F XA OFrec™XA. 4

(WT-VAR)

© well-formed

(WT-ZERO) or o

FIGURE 24. Typing Rules for checking Well-Threadedness.

14.6. Type Disciplines for Well-Threadedness (1)Given a well-typed, strongly connected
annotated interaction, its well-threadedness can be csitiqeally checked using a typing system.
We first present the typing system which che¢@@4—G3). Then we refine it so that it can validate
(L). Henceforth le§5 S, ... range over the finite sets of session channels.

O = O01:S | 6,X:06 | 0
We assum® defines a function (with its domain the threads and term bie&. ©,, 0, indicates
their union s.t. dom(®;) Ndom(®;) = 0. We say® is well-formediff each session channel is
assigned to at most two threads, i.e. iff whenaves ¢ © such thasc S, there is at most on€ # 1
such thatt’ : S € ©® such thase€ S.

The typing judgement has the for@- 4, where© records free session channels used in each
thread in4 and is (inductively) well-formed.

DEFINITION 17 (Type Discipline for Well-Threadednesdjor an annotated strongly connected
(hence well-typed) interactiod, © - 4 is derived by the rules in Figure 24, where for convenience
we annotate each inactio® with a thread, writing0'. The notationtopT(4) returns the active
thread of 4 for 4 which should be a non-extended annotated interaction irsémse of Definition
12 with0 annotated as above (for which we sepT(0") = 1).

78

In the typing, well-formedness is inductively guaranteedtsat, for well-threaded interactions, the
required shape of the typing in the premise(#/T-INIT) and (WT-ComM) is always satisfied.

In (WT-INIT), we placet, : 0 so that no further threads can usg The two rules for parallel
composition,(WT-PaR) and (WT-PaR-EXT), are in precise correspondence with the grammar of
annotated interactions (cf. Definition 12: note however Wallsstill be writing 4 etc. from now

on for extended annotated interactions). Only\WT-PAaR) we demand the initial active threads of
the two components to be identical. The hid{iMy T-PAR-EXT) is also only for extended annotated
interactions. A basic property of the typing system follows

THEOREM4 (Soundness of WT-typing)An extended annotated strongly connected interaction
A4 is well-threaded i© - 4 for someO.

Remark. Below and henceforth (IH) stands for induction hypothesis.

Proof. We prove the following stronger result, where we say a thri@ad is completeif it
occurs as a passive thread in session initialisation.ifiiempletsf not.

Claim. If ©F 4 then (1)© is well-formed; (2)4 is consistent and each incomplete threaa
A4 usessiff T:sisin®; and (3) for each complete thread, sa containst : 0.

For(WT-INIT), (1) and (2) are direct from (IH). (3) is by (IH) and the shapéhe rule, notingr, got
completed. FofWT-ComMm), (1) and (3) are direct from (IH). (2) is ensured by (IH) and ton-
dition in the premise. For each ¢¥WT-ASSIGN), (WT-IFTHENELSE), (WT-SuM), (WT-PAR),
(WT-ExT-PaR) and (WT-EXT-RES), all of (1..3) are direct from (IH) and, fofG3) of (2), by
the corresponding condition in the premise. FingdlWT-VAR) and (WT-ZERO) are obvious. For
(WT-REC), (1) is direct, (2) is by (IH) with G3) being obvious, and (3) is again by (IH). O

Below we defined = 4/, (0,4) — (0’,42') etc. exactly following the corresponding relations
on unannotated interactions (cf. §11.3, Figure 21, page &®ept we demand top-level parallel
compositions (i.e. those which are not under prefixes) ateanootated and, when a reduction
creates a new top level parallel composition, its label khba taken off.

THEOREMS5 (Subject Reduction: Well-ThreadednessBelow 4, ... include extended anno-
tated interactions.
(1) fOF2and4 = 4’ thenOF E.
(2) If1 =1’ and | has a consistent annotation théralso has a consistent annotation.
(3) f®F 42 and(0,4) — (¢/,2') thenO + 4.

Proof. (1) is easy rule induction (on the generation rules=f9r (2) is by (1), noting ifl =1’
and4 is a consistent annotation bthen the same derivation witnessihg: I’ leads ta2’ such that
A= 4'. (3)is by rule induction on reduction rules. All are easyeptcwe use, for induction for
the reduction of recursion® F rec X.I implies® F [[(rec X.1)/X] [because: if© F rec X.1, then
O, X : OF I, hence by using induction dnand thinning we are donel]. O

To capture local consistency directly in the typing system refine the type discipline given in
Figure 24. The refined system also offers a simple, indugtistfication of Proposition 10. We first
augment the typin@® as follows:

O = 61:(1,9 | 01:(,9 | ,X:06 | 0

Above we add, for each thread, the direction of the latespa@b that thread. The judgement has the
same form except we use this refined typing. The oper@ip® ©, now combines the information
on the direction, so that it is defined iff the directions @iite for each common thread: if this fails

79

for any thread, the composition is undefined. We then redM€eInit) and (WT-Comm) as follows:
0,11:(1,S8S}),12: (1,8)F A topT(A) =12 S C{§
0,11: (1,9 Al — B2 :ch(§).4

0,11:(,S),12: (I,S) F A& topT(A) =T, J#0
0,11 (1,5 U{s}),12: (|, U{s}) - At =B : s(op, €, X). 4
In both, the condition on the direction & is non-trivial. After giving activity to another thread,
when it comes back insidg, the thread» always starts as an input. The remaining rules stay in the
same shape (except we use the refined typings).

It is easy to check that the typability in this refined systéradaly entails (not only global con-
sistency, by Theorem 4, but also) local consistency, byantaeing strict alternation in the direction
of interactions for each thread. We can further show indedtfithat this refined system type checks
precisely the same terms as the original system, estatjs$trioposition 10.

(WT-INIT)

(WT-Comm)

14.7. Type Disciplines for Well-Threadedness (2)We next consider the existence of “rep-
resentative annotation” for a well-threaded interactitdde say a consistent annotaticty on | is
minimalif, up to renaming, any consistent annotati@rof | arises by collapsing the annotations in
Ay. For example (and as a simplest possible case), considélb@ing well-threaded interaction.

(B—C:che(t).C—B:t{...).B=A:s(...) |
B—C:ch(t').C—B:t(..) B—A:s(...))
Then its minimal annotation is, up to injective renaming:
(B —C3:che(t).CP—BL:t(..)B' =AY 5 (.. |
B? - C*:ch(t').C*—B2:t(...)B? = Al 1 55(...))
By collapsing labels, we can reach:
(B2 —C3:che(t).C3—B2:t(..)B? =A% :5(...) |
BZ - C*:ch(t').C*—B2:t(...) B2 = Al : 55(...))
We can further collapse labels while being consistent:
(B2 —C3:che(t).CP—B2:t(..)B?— A5 (...) |
B? - C*:ch(t').C*—B2:t(...)B2—Al: 5(...))
Formally the notion of minimal annotations is defined asdigl.
DEeFINITION 18 (Minimal Consistent Annotation). Létbe well-threaded. Then its consistent

annotation4y is minimalif for each consistent annotatiofi of I, there is a possibly non-injective
substitutiono of thread labels such that = 4,0.

The type discipline which inductively constructs a mininaahotated interaction dfiff | is well-
threaded, is given in Figure 25. We again use annotatediémaftir convenience, this time with a
participant name too, writinQIA. The sequent has the shapé-™i" 2 where the typing® is a finite
sequence of assignments each of the fornfA, S) whereA is a participant an&is a set of session
names. We demar@ to bewell-formedin the sense that:

(1) ©induces a finite map from threads to such pairs, in the obvsemse. In this case we
write e.9.0(1) = (A, S) when the function induced b mapsAto S.
(2) Foreach, if ©(t) = (A,S) ands € S, then there is at most or#é # T such tha®(t’) =
(A',S) ands € S. Moreover in this casa # A
(This well-formedness is automatically ensured indudyiwe the typing rules in Figure 25.)
These rules refine the rules in Figure 24 and inductively essimple equational constraints.
This constraint is distilled in the operatosm(©; ; ©,) used in these rules. This operator is defined
as follows.

80

0,12:(B,S)F™" 42 topT(A) =1, SC{}
com(11:(A{8});0) = 11:(A,S),00 (11 fresh)

WT-MINT) S5 11: (A S\ (8)).15: (B,0) - ™" AU — B : ch(§) (A0)
0,15:(B,SF™" 4 topT(4) =1,
(WT-MConm) com(t1:(A{s});©) = 11: (A, S),0c (11 fresh)

11:(AS),12: (B,S),0 Fmin A1 B : g(op, € X).(A40)

OF™MN g topT(4) =1
OFmin x@AT :=e. 4

(WT-MASSIGN

O F™" g topT () =1 com(01;0,) = (0,UB,)0

WT-MIFTHENELSE g
() (©1UB3)0 Fmin if e@AT then ;0 else A0

1:(AS),0F™" 4 topT(4)=1 dom(®1)Ndom(0,)=0
com(T: (A US);01UB) =1: (A S),(01UB)0
(O1UBy)a-min (7, +1 4p)0

(WT-MSuwm)

1:(AS),0 F™" 2 topT(4) =1 dom(®1)Ndom(O,) =0
com(1: (ASUS);01UB) =1:(AS),(01UB2)0
L (A>g)>(91U92)0 |_min (ﬂl ‘T ﬂZ)o-

(WT-MPAR)

O F™" £ dom(®1)Ndom(O,) =0
©1U O, -min ¢, | B2

(WT-MPAR-EXT)

oFmn g

WT-MRES-EXT) —
() &jsrmin £

WT-MZERO) —
() T: (A,0) Fmin of
- OF™" 4 topT(4) =1

WT-MVAR) —— WT-MREC -
() T: (A, 0) F-min XA () O Fmin rec TXA. 4

FIGURE 25. Typing Rules for Inferring Minimal Consistent Annotais.

DEFINITION 19 (Collapsing Operator). Given well-form@ », a partial operatorom (91 ; ©2)
which, when defined, returns another well-formed typingive@n inductively as follows.
e com(0; O) is always defined with the valu@.
e Givent: (A,S) and®, we calculate a substitution (a finite map from thread labzl$s
subset) and a finite set of session channélas follows.
Step 0: First we se to be empty (acting as the identity) amdo beS.
Step 1: Find allt{ : (A, §) in ©c such thaff N § # 0.
Step 2: Given the sefT; : (A,§)} obtained inStep 1, set newo as the union of the
original o and the magJ; T} — T; and newT as the union off and|J; S; If the
results are the same as the original values, we are donet, ive@jo back t&tep 1
with the newo andT.
We can check that the procedure above always terminat®s it the resultings is well-
formed, thencom(t : (A,S); ©) is defined and has the valae (A, T),(©0)/t (where
(©0) /1 takes off ther-component fron®). If not, it is undefined.
e com(01,1: (A,S); ©) is defined with valueds if and only if com(t: (A,S); ©5) is
defined with value), andcom(©1 ; ©}) is defined with valu®s.
If com(©1; ©7) is defined and has the val@, we writecom(0Q1; ©;) = Os.

81

Equivalently, inStep 2above,com(1: (A,S); ©) finds the minimum{t;} from dom(®) such that
eachr; is assignedA, Ti) whereT; intersects non-trivially either witl$ or with anothefT; in O(t;)
with Tj € {1;}; and those outside dftj} do not intersect witts.

Thuscom(©1; ©2) combines®; and ©; so that if the same participant uses some common
session channel in two assignments then they are collapsedrie assignment by taking the union.
This notion of common-ness is taken hereditarily so thatadlads of a certain participant which are
assigned transitively common session channels are e¥gntodapsed. We are using the following
notation in the rules.

NOTATION 1. Letcom(O1;@,) = O3. Since®j is the result of collapsing assignments in
O1,2, we write this result ag0; U ©;)a by which we mean the result of collapsing thread labels and
assigning to the resulting thread labels the unions of threesponding session channel sets.

Given a strongly connected (hence well-typeahich we assume to conform to the standard bound
name convention, we can use the rules in Figure 25 to genédrathich annotates by (1) first
labelling each inactio® and term variablex” with distinct thread labels (all occurrences of the
same term variable are given the same thread label) and d@¢tinely inferring the thread labels
of a term from its subterm(s) following the rules in Figure, 28suming it is definedExcept for
choosing fresh thread labels in the base cases as well(@TaMINIT) and(WT-MComM), each
induction automatically generates a unique annotated ifezwer, so that the resulting term (if any)
is also unique. Write this partial functiodflinAnn and the resulting term (when definédjnAnn(l).

PrRoPOSITION11 (Existence of Minimal Consistent Annotation)et | be strongly connected.

(1) If MinAnn(l) is defined, then it gives a minimal consistent annotationiothe sense of
Definition 18.

(2) If1is well-threaded, theMinAnn(l) is always defined.

(3) 1is well-threaded ifMinAnn(1) is defined.

Proof. For (1), we show by induction o that typability in Figure 25 means typability in
Figure 24 with the corresponding typings modulo vacuoukifegpaired type assignments needed
for the well-formedness for the original typing system. Atk easy induction. For (2), we directly
check that satisfaction of the conditio(51/2/3) means typability in Figure 25. (3) is immediate
from (1) and (2). O

82

15. Theory of End-Point Projection (3): Coherence

15.1. Mergeability of Threads. By connectedness and well-threadedness, we have shown how
we can analyse the structure of a global interaction as aaah of different threads that compose
it. In other words, these threads will become, in the enapcaiculus, as constituents of processes
which interact with each others and realise the originalavéur in the global description. In the
present section, which offers the last step of our ongoirajyais, we explore how we can consis-
tently construct concrete processes based on these thr€hdsconcern immediately leads to the
final well-structuring principle for global description d@he top of strong connectedness and well-
threadedness.

We first observe it is often necessarynergethreads to obtain the endpoint behaviour which
realises a global interaction. For instance, consideraieviing parallel composition of two inter-
actions.

A—B:ch(vs).B—A:s(op, e X).A—B:s(opy, €1, X1) |
A—B:ch(s).B—A:d(op, & X).A—B:5(op2, &, X2)

If we annotate this interaction we know th&™will be marked with two threads, each corresponding
to one of the twach invocations. When we make the end-point processes, we neaérge these
two threads into one process, since we naturally demand themly one service offered ah. The
merging becomes necessary because these two threads $teventibehaviours:

e In one,A chooses the optioap; which B offers; while
e in the otherB chooses the optioap, which B also offers.

We can project these two threads into two end-point prosesse

(1) !'ch(s).s<top(e).s>opy(X1)

(2) !'ch(s).s<op(e).s>o0p(x2)
In spite of having two behaviours for the same “service”, endéviour, we can consistently integrate
these two threads into a single behaviour, using a branéhmg:
(89) B [!ch(s).s<op(e) s> (opi(x1) + 0p2(%x2)) o,
Indeed, this combined behaviour does act as prescribee igltfval description, when the following
two output threads & invokesB via ch are given.

(898)

(90) A[ch(vs).s>>op(x).3<op1(er).0 | ch(vs).s > op(x).5<0op2(€2).0],

We can easily observe the compositionfcdindB does indeed induce the original global behaviour.
Similarly we can easily extract threads Brandcombine them into a consistent whole.

A—B:ch(vs).B—A:s(op, e X).A—B:s(op1, €1, X1) +

(1) A—B:ch(s).B—A:d(op, g X).A—B:5(op2, &, X2)
Similarly for
(92) if @A then A— B:ch(vs).B—A:s(op, e x).A—B:s(ops, €1, X1)

else A— B:ch(s).B—A:s(op, e x).A—B:5(op2, &, X2).
These three cases — parallel composition, sum, and conditie- are the central cases from which
the need to merge threads arises.

However therare cases when we cannot merge two related threads coming frorgla global
description. Consider the following interaction, againdesing orB’s behaviour.
A—B:ch(vs).B—A:s(op, € X) |
A—B:ch(vs).B— C:ch(vt)...

How can we project this description to the end-point behavad B? WhenB is invoked for service
ch, on one thread it replies to the invokeX)(while on the other one does something completely dif-
ferent. In fact, we obtain the following two slices (instasg ofB’s behaviour from this description:
(1) !ch(s).s<op(e) and

(2) 'ch(s).ch/(vt)...

(93)

83

which can hardly be merged consisteﬁffy.

Thus we need a formal notion by which we can judge whether twoare end-point behaviours
are consistently mergeable or not. In the above exampldoild tells us if the descriptions of
two different invocations for a serviceh, when transformed into end-point processes, are in fact
mergeable to yield a single coherent behaviour. We callrtiationmergeability

DEeFINITION 20 (Mergeability). Mergeability relation denotedx, is the smallest reflexive
and symmetric relation on typed processes which is closddnthe following rules.
P > Q; for eachi € JNK andopj # op for eachj € J\K,k € K\J

MGBL-IN
s> 230pj(Xj) . Pja s> Zkop(X) - Qk

P=Q(i=12..n)
C[P]-.[Pn] 5 C[Q1]..[Qn)]

MGBL-CONG

MGBL-ZERO

PO O P

P=P PxQ Q@=Q
P Q
In the second rule we assur@gP|..[Py] andC[Qs]..[Qn] are both typed. In the third and forth rules
we assumé has the empty session typing (i.e. it has no free sessions)amMéhenP 1 Q, we say
P and Q are mergeable

MGBL-STRUCT

Observe that the only non-trivial clause is for the branghimput: it says that, for each common
branch, the behaviour should be essentially identical ¢ug:on subexpressions). Intuitively, the
relation checks that two given processes are more or less identib. “more or less identical”
means that, in brief, their behaviours do not contradictmihey come to the same course of interac-
tions, i.e. when the same branch is selected by the intagpptirty. Thus the rules above say that we
can allow differences in branches which do not overlap, beide demand each pair of behaviours
with the same operation to be identical.

The last two rules say (under the condition noted below) BreatdO can be merged, assuming
they contain no open sessions. This becomes necessary wgieenaglobal description has (for
example) a sum in which a session invocation on a specifioghaccurs only in one branch, which
is a natural behaviour. As a simplest case, consider:

0 + (A'—B?:ch(vs).B2—Al:s(op, e y).0)
in which case we have the empty process on the right-handa@iéach thread; but, on the right, the
thread 1 is projected onto a behaviouinvhich starts from an output, and the thread 2 is projected
onto a replicated process (servicefhiocated inB. Since we want these to be mergeable, we allow
these two to be merged.

If two end-point behaviours are mergeable in the above ieahsense, we can merge them and
obtain a single process which simulates both of the two ehes; by combining missing branches
from the both. For instance, the process

s> go(x) . P
and the process
s> stop(x). Q
are mergeable, and the result of merging is simply:

s>go(x).P + stop(x).Q

L3opserve the result of directly combining two threads:
Ich(s).(s<top(e) dch(vt)...)
doesnot conform toeither of the two components of the parallel composition in the glatescriptions.

84

. Below we present the formal definition of merge operation.

DEFINITION 21 (Merge operator).PL Q is a partial commutative binary operator on typed
processes which is well-defined iftfQ satisfying:
Ich(s).PUIch(s).Q = 1ch(s).(PLQ)
ch(s).Puch(s).Q = ch(s).(PLQ)

def zleJmKoﬂ).(RUQ) +
S>> Zicgop (Vi) - RUS> Zickop (Vi) . Qi = Zicakop(yi)-R +

|6K\JOQ)-Qi
def
x:=e.PUx:=e.Q = e.(PuUQ)
if ethen Py else P, LIif ethen Q1 else Q> def if ethen (PLLIQ1) else (PLUQy)
def
(PLIP)UPs|P) = (PLUPs) | (P2UPY)
s<op(e).PuUs<@op(e).Q R @op(e).(PLQ)
def
PLEP)UQeQ) = (PLUQ)®(P2oQ)
recX.PuUrecX.Q def recX.(PLQ)
xux %ox
puo = p
oup % p
def / / / /
PUIQ £ R (PUQ=RP=P.Q=Q)

where, in the right-hand side of each rule, we safely assiwanlk application of the operator to, say,
P and Q, we always haverR Q.

The merge operator merges two end-point behaviours. Irr éodéhis merging to be successful, this
partial operation requires, for its definedness, that twaresses are related by. This guarantees
the definedness of the right-hand side expression. By theuks Ll is defined up to=, which is
consistent with< being defined up tee.

As before, the most significant rule in the above definitiothis one for the branching input.
They inspect the two operands which must start with

s> Ziopi(yi)
Then, if the operatioo appears in both terms, then the terms after the préfiar(dT;’) are merged

as well, which are ensured to be mergeable by the assumgtidhe other cases, a new branch is
added to the summaticn

15.2. Thread Projection and CoherenceGiven a consistently thread annotated interaction,
we can project each of its threads onto an end-point proc&hss thread projectionis a partial
operation again by its use of the merge operator. Before idgfithe thread projection, we add a
further annotation to each recursion and each recursidablar Givenrec "™X*. 4 in an annotated
interaction, let{1; } be the set of threads occurring in, matinitiated in, 4. Then we further annotate
this recursion agec {1} X and each freX” in 2 asXﬁ{Ti}. The added information is used for taking
off unnecessary recursion from endpoint processes.e

CONVENTION 7 (annotated interactions). Henceforth4, ... range over extended annotated
interactions (cf. Definition 12)Annotated interactiomeansextended annotated interaction

85

DEFINITION 22 (Thread Projection) Let 4 be consistently annotated with additional anno-
tation as noted above. Then the partial operatibR(A4, 1) is given as follows, assuming in each
line 1y, T2 andt’ are pairwise distinct and the I.h.s. is undefined.ifin the r.h.s. (if any) is undefined.

TP(A"™ — B™:b§. 4, 1) = 'b(8). TP(2, 12) ift=12

b(vg).TP(4, 11) if1=1g
TP(A4, 1) otherwise

S<gop(e).TP(4, 1) ift=11
s>opi(X).TP(4, 1) ift=1
TP(4, 1) otherwise

TP(A™ —B™ :s(op;, &, X).4, 1) =

v def TP(41, U)oTP(4,) if1=T7
TP+ A, 1) = { TP(41, T)UTP(4, T) otherwise

, v def if ethen TP(A1, T') else TP(Ap, U) ift=1
TP(if e@A" then 3, else A, T) o TP(A1, T)UTP(Ap, 1) otherwise
. def x:=e.TP(4, v) ift="
TPO@A" :=e.4, 1) - TP(A4, 1) otherwise
TP %, 1) & TP, T)[TP(4, T)
TP(E T 1) = TP(E, T)[TP(%, T).

A def recX.TP(4, 1) ifte{f}
TP(rec X4, 1) { TP(A4, 1) otherwise

A def X ifte{fi}
TPy O = { 0 otherwise

TP(O, 1) = 0

If TP(A4, 1) is undefined, we satP(4, 1) =.L.

Some observation:

(1) For each of the initialisation and communication, weehtwree cases:
(a) When the concerned thread coincides with its activeathrizn which case we obtain
the corresponding output prefix;
(b) When the concerned thread coincides with its passiveathrin which case we ob-
tain the corresponding input prefix; and
(c) three, when neither applies, in which case we simplyioltae projection of the
remaining body, which is, by Lemma 6, always in the inputpotiform.
(2) For assignment, parallel composition, conditional dtigenelse, each of which is anno-
tated with a single thread, we have two cases:
(@) When the projecting thread coincides with the threachefinteraction, we simply
carry over these constructors to endpoint processes;
(b) If not, we simply merge these threads (or identity in theecof assignment).
(3) Other cases are defined compositionally.

The definition of thread projection already demands thauefever wish it to be well-defined, the
behaviours inside a thread should be built consistendy,ithenever we use the operator should

86

be defined. The notion of coherence includes this well-défines, and extends it to inter-thread
consistency.

The need to consider inter-thread consistency arises bedhea description of the behaviour of
a service (replicated input) can be distributed over moag thne places in one global description.
In this case, we should combine the result of projecting iplelthreads into one code, for which we
use the merge operation again.

As an example, recall the projections we have seen in (98g B8, which we reproduce below
with annotations.

(94) A Bl:chvs).B!—A%:s(op, e x) | A’ — B?:ch(vs).B? —C3:cH(vt)...
Call this interaction4. Then we have:

TP(a, 0) % CRvs)s>op(x).0 | chvs)...
TP(a, 1) % ich(s).s<0p(e)

TP(a, 2) % ich).cHt)...

TP(a, 3) % eHa)..

Clearly !ch(s).3<1op(e) and Ich(s').ch (vt)... are not mergeable. The point of coherence is that, if
there are multiple threads which constitute parts of theabiglur of a permanent service, then they
should be mergeable.

Since each channeh uniquely defines a service, we can collect all threads duutirig to the
behaviour of this service by taking the passive thread afieassion initialisation interaction véh.
Formally we set:

DEFINITION 23 (threads-per-channels). The mae(4, ch) is defined as follows, assuming
ch #ch.

tpc(A" — B2 :ch(vs). 4, ch) = {12} Utpc(A', ch)
tpc(AL - B2 :cH(vs). 2, ch) £ tpe(a, ch)
tpc(At B :slop, x,)4, ch) %' tpe(4, ch)
tpc(x@A :=e. 4, ch) L' tpe(a, ch)
tpc(if e@A" then 4] else 45, ch) def tpc(A41, ch) Utpc(45, ch)
tpc(4] + 45, ch) def tpc(41, ch)Utpc(45, ch)
tpe(A | 4, ch) E' tpe(a], ch)Utpe(ay, ch)
tpe(rec XA 4’ ch) L' tpe(a, ch)
tpc(XA, ch) % o
tpc(0,ch) %' o

Thatis, ift1,T2 € tpe(A4, ch), then these two threads are parts of the behaviour of the samiee.
If two input threads are for the same service channel, theynahe equivalent. Beloshannels(4)
indicates the set of service channels occurringlin

DEFINITION 24. Given a well-threaded annotated interactigh for all T € 4, we define the
equivalence clasg]? C N as

7 = tpe(4, ch) if 3ch € channels(4) such thatr € tpc(4, ch)
{1} otherwise.

Giventy 7 in 4, we writety =4 T, if there exists € 4 such thatry, T, € [T]ﬂ.

87

DEFINITION 25 (Coherence). Given a well-threaded, consistently atedtinteractiond, we
say that4 is coherentf the following two conditions hold:
(1) Foreach threadin 4, TP(4, 1) is well-defined.
(2) For each pair of threads, 12 in 4 with 11 =4 1o, we haveTP (4, 11) < TP(4, T2).
We say a well-threaded non-annotated interacti@coherentif | has an annotation which is
coherent in the above sense.

ExAMPLE 17. (thread projection and coherence)

(1) The interactions (88) in page 83, (91) in page 83 and (®Rpoge 83 are all coherent, but
(93) in page 83 is not.

(2) The following annotated global description alreadyegmed in Section 15.1 (below and
henceforth we often writé etc. for annotated interactions).

1 %" o 4+ (Al B?:chvs).B2—Al:s(op, € Y).0)

The descriptiorl says that there are two possible paths in interactions: énpaith, noth-
ing will happen. On the othe’ and B will initiate a session, for which there is one
interaction, and the session completes there. Then theqgtimy ofl onto 1 and 2 are,
referring to Definition 22:

TR0, 1) % 0@ (tvs).sy).0)
TP, 20 %" 0u (1c(s).50ple).0)

Note the r.h.s. of the second simply beconm&s)!Sop(e).0 itself. Since there is a unique
thread for a service ath, we concludd is coherent.
(3) As aslightly more complex example, consider:

" % Al L B?:chvs).B2—Al:s(opy, “helld’, y1).0 +
A® - B*:ch(vs).B?— Al : s(ops, “goodbyé, y,).0 +
AS - C8:ch(vs).CO—A%:d(opy, “hi", x).0

In this case, the projections become:

TP(, 1) % (cR(vs).sopi(y1).0) @ 0@ 0
TP, 3) % 0@ (Chvs).sopi(y1).0) © O
TP, 5) % 0U0UCH(VE).opa(ys).0)
TP, 2) %" (1ch(s).sop1 (“helld”).0) L O LI O
TP(', 4 %" 0U (1ch(s).30p2(“goodbyé).0) L O

TP(l', 6) = 0 U (feh(8).Sopy(“hi").0) U O
Immediately each oT P(I’, i) (1 <i < 6) is defined. Since we hawec(l’, ch) = {2,4}
and tpc(l’, ch') = {6}, in order forl’ to be coherent, we should haWeP(lI’, 2)
TP(l’, 4) which is possible ifop; # opo.
A further example can be found in Section 16.7

15.3. Subject Reduction for CoherenceBelow 4 = 4’ is defined precisely followings on
unannotated interactions.

PROPOSITION12 (subject congruence for coherence).

(1) uis partially symmetric and associative, and has the idgfitiall up to=. l.e.: PLQ is
defined iff QJP is defined and when they are so, we have®= QUP; (PLQ)UR is
defined iff RJ(QUR) is defined and, when they are so, we héRe/Q) UR= PLI(QUR);
and for each P we havelPO = P.

88

(2) Suppose | is coherent. Ldtbe its consistent annotation amdbe its thread. Therl = 4’
impliesTP(4, 1)=TP(4/, 1).
(3) Suppose | is coherent. Theeell” implies I is coherent.

Proof. (1) is immediate from the definition, noting, by the first rimeDefinition 21 as well as
Definition 20, if(PUQ) L/Ris defined then they do not have any conflicting branch amaaghtiee,
which is the same thing @&L/ (QUR) being defined. For (2), we use rule induction on the generatio
of =. As one typical case, suppoge= 2’ from the associativity of, i.e.

(A1|42)| 33 = A1|(A2| A3).

If Tis the top thread, then we observe:

(TP(A1, D[TP(A2, 1))[TP(A3, T) = TP(A1, T)|(TP(A2, T)[TP(43, 1))
hence done. If is not a top thread, thejnis interpreted as! which is associative by (the annotated
analogue of) (1), hence done. For (3), by (2) we only have tsicker mergeability of threads. For
this purpose we observe that, in the definition of mergegic< Q in Definition 20, we can first
apply = to P andQ using the last rule in Definition 20, and then validate the@rgeability via the
rules except that last one. Thug i I’ and the thread projection tffor each thread is defined, then
that of I’ is defined: similarly, if we have e.gpc(l, ch) = {11, T2} thenTP(I, 11) > TP(l, Tp) iff
TP(I', 11) =< TP(l’, T12). O

Next we observe:
LEMMA 7 (substitution lemma for coherencelf.rec X.1 is coherent then so ig(rec X.I)/X].
Proof. (outline) We consider a consistent annotatiomeaf X.I which we write
2 ® recxA A
We then consider
A" L A xds).
where, to be exact, each substitutiagshould be given, for its passive initial thread, a freshalklre
number, though we leave this point implicit since this doesaifect the following argument. Con-
sider a thread; in T. Then either (1) it starts from a positive position4hor (2) from a passive
position in communication. TP(2, 1;) = rec X.P then by induction we can check
TP(A", 1i)) = PlrecX.P/X].
including its definedness. In the both (1) and (2), this ttirisanot to be merged with any other
threads, hence done. On the other hand;favhich is not inT but which occurs if, this should
be a passive complete thread insldgor the meaning of “complete”, see the proof of Theorem 4,
page 79). Note the annotatian T in rec X2..42 makes the thread projection gf’ to T’ turns this
substituted term t@, just as each(ﬁf is done so in the thread projection 4f to t/. Thus, letting
TP(A', v') =!ch(§).P, we obtain:
TP(2",) = !ch(§.P
that is thet’-projection of 2’ and thet-projection of 2” coincide. Note the same reasoning holds

for any other thread ic?’ which should be merged witH, hence mergeability does not change, as
required. O

Below we assume, as noted just before Theorem 5, 79, thaicbaly top-level parallel com-
positions are unannotated and that reduction takes off thetations of newly formed top-level
parallel compositions if any.

THEOREM®6 (Coherence: subject reduction)f 4 is coherent ando, 2) — (o, 2’), thena’
is also coherent.

89

Proof. We check how the collection of threads together with the @ased thread projections
is transformed fron to 4’. Let this collection beb and®’, respectively. By abuse of designation
we say that these sets are coherent. We then show the fojjaldim by rule induction on reduction
rules.

Claim.If @ is coherent, the®’ is also coherent. Moreova' is either the result of truncating
some of threads fron®, as well as adding zero or more collections of the fresh cetepthreads,
each collection being multiple copies of a complete thredstiag in &.

Above the copies can be created due to recursion. Assufrem 4 is coherent. FofINIT), we first
take off, from®, the head of one complete threacth{so that it is not a target of merging anymore)
and truncates one active thread, otherwise using the saeathasb. The originally passive thread,
sayTp, is now an active thread, whereas the originally activeatirsayt4, is now a passive thread,
both of which are put in®’. If T, demands intra-thread merging through its own thread ptiojec
then so does it originally i. Otherwise merging i’ remains the same a8, hence done. For
(Com), we truncate two non-complete threads, one active and ttez passive, fron®. Again the
originally active thread, saw, is how passive, whereas the originally passive threadrsdg now
active. There is no change in inter-thread merging, so wénageow @' is coherent. (ASSIGN)
truncates a single active threaddn while both (IFTRUE/FALSE) and (SuM) simply cut off some
of the threads fron® to maked’. For (PAR), assume

a4 = 4|4

Accordingly we can set

O = DUD,
where®; and®, respectively come fronl; and 4. Now assumed; reduces tazli, with the new
threads®). By assumption, we know; may truncate some threads and may add copies of existing
threads with fresh thread numbers. Since neither affecyeadility we are done (note intra-thread
mergeability remains the same by the definition of the ptajecf a top-level parallel composition).
(REs) does not change threads (i®.= @'). (Rec) is by (IH) and by Lemma 7, possibly adding
collections of fresh copies of complete threads. FindByrucT) is immediate from Proposition
12. O

Finally, since= is decidable, so is mergeability, by which we know:

ProPOSITION13 (Coherence Validation)Given a consistently annotated there is an algo-
rithm which returns true if7 is coherent, false if not.

Since typability, connectedness and well-threadednesslao calculable, this shows that we can
algorithmically check whether a given untyped interacti@igoherent or not. Since complexity of

checking typability/connectedness/well-threadedngesesch linear, the complexity of this validation

is linear if validation of mergeability can be done so. Weida this is possible by taking certain

normal forms.

90

16. Main Results: EPP Theorem and its Consequences

16.1. The Projection. In this section we introduce the formal definition of endpqirojection
and establish its properties. Below and henceforth we gasestriction-freewhenever it contains no
terms of the formv s) I’ as its subterm. Recall also being coherent entails beinigtyeed, strongly
connected and well-threaded.

DEFINITION 26 (End-Point Projection)Let | be a coherent interaction such thatl ((vs))I’
where [is restriction-free. Letq be a consistent annotation df [Then theend point projection of
A4 undero, denotecEPP((v8) 4, 0), is given as the following network.

(V9 Macparey AN || TP(A, T)lo@a
Te)

wherepart(l) denotes the set of participants mentioned in I.

At the end of the section, we shall illustrate how the cordtoms involved in Definition 26 works
step by step using a mapping of a concrete, non-trivial dldescription.

The mapping given in Definition 26 is defined after choosingecgic annotation of an interac-
tion. The following result shows the map in fact does not dejpen a specific (consistent) annotation
chosen, as far as a global description has no incompletadbrée. it does no free session channels
(which is what programmers/designers usually produce).

PrROPOSITION14 (Invariance under Annotations)siven a coherent + | > 0 andl + o, let
A2 be consistent annotations of | and- 0. Then we hav&PP(4;, ¢) =EPP(4,, 0).

Proof. Let| be coherent and, without loss of generalitye restriction free. Lef be a min-
imal consistent annotation df(whose existence is guaranteed by Proposition 11, 82) 4 &ke a
possibly different consistent annotationlofBy the definition of minimality (cf. Definition 18) and
by construction, there is a surjective mayfrom the threads ity to 4. Let T be a thread il and
letty,..,Th with n > 2 be threads i such thao(tj) = 1. Firstt cannot be a complete thread (for
the notion of complete threads see the proof of Theorem 4sir@g if so,T in | should start from
a unique service channel, hence cannot be given multiptathiabels. Henceis incomplete. Be-
causd has no free session, this means eméb an active thread starting from a session initialisation.
Now the initial action of such a thread cannot be under a idiffeprefix since if so that prefix (its
passive part) should have the same thread label. Hencergisctine initial active thread of a prime
interaction (an interaction iprimeiif it cannot be decomposed into a non-trivial top-level plata
composition). That is each is in 4/ such thatd’ = (M;.%)|-2”. Noting 4 has precisely the same
syntactic structure, we infer:

TP, 1 ¥ nmiTPA, 1)
= rlO'('[i):TTP("qv T)
that is the projection oft’ ontot and the projections ofl onto{t;} coincide. O

16.2. Need for Pruning. The main results of the present paper we shall establish dates
that the dynamics of a given (coherent) global descriptioexactly preserved and reflected by its
endpoint counterpart, via the EPP mapping introduced ablavetate this result accurately, we need
a preparation. Consider the following very simple globadatgtion.

(95) A—B:b(vs).0.

If we EPP this interaction with environmeat we obtain the following network:
(96) Alch(v 9).0]s@a | Blch(s).0l;@p

Now (95) reduces as:

97) (0,A—B:b(vs).0) — (0,0)

while (96) reduces as

(98) A[ch(vS).0loga | B[ch(S)Ologs — Al0lg, | Bch(S).0]sgs

91

Note (97) results in the empty configuration, while in (97¢ gervice ath still remains, because
it is replicated. Note there is a discrepancy between twaigtons: before reduction, the end-
point behaviour is indeed the EPP of the global descriptidrile after reduction, the former is no
longer the EPP of the latter. However, as far as “active” bigha (i.e. those who induce immediate
reduction) goes, there is a precise match: that is, as fareatake off the replicated service as a
garbage (since it is no longer of the use from inside this gomndition), there is an exact match.
As another, and more subtle, example, consider the follgwiteraction:
A—B:b(vs).B—A:s(ack).A—B:s(go).0 +
A—B:b(vs).B—A:s(ack).A—B: s(stop).0

The projection of this interaction is, omitting trailingdations:

(99)

Alch(vs).st> acks <1 go @ Ch(v s).SI> acks<Istops@a |
B[ch(s).s<1ack.(si> oksp> stop];@p

After one step which takes the left branch, (99) reduceseddhowing configuration:
(101) A—B:b(vs).B—A:s(ack).A—B:s(go).0
The corresponding reduction for (100) leads to:

(100)

(102) Alch(vs).si>acks<igo]s@a | BlCh(s).5<1ack. (s> gost> stop]s@p
Now take the EPP of (101):
(103) Alch(vs).s>>ack3<igo]s@a | BlCh(s).3<1ack.s>>go];@p

There is again a discrepancy between (103) and (102): theefofor its original, (101) hal®st one
branch, while (102) keeps it. But again we realise this loahbh is inessential from the viewpoint
of the internal dynamics of the resulting configuration: lthench “stop” is never used in (101).

In summary, a global interaction can lose information dgiieduction which is still kept in the
corresponding reduction in its EPP, due to persistent bebaat service channels. This motivates
the introduction of the following asymmetric relation thaé shall use to state a property of the
end-point projection. Below we writeR whenR is an-fold composition of replications.

DEFINITION 27 (Pruning). Assume we have Fp P > A, I',I" a4 Q > A and, moreover,
I Fa P> Ais a minimal typing. If further we hav® = Qg|'R wherel - Qo > A, ' -4 Rand
P >1Qp, then we writel’ FA P < Q> AorP < Qfor short, and say prunes Q under;A.

Writing simply P < Q does not in fact lose any precision since we can then alway@nsgruct
appropriate typingsP < Q indicatesP is the result of cutting off “unnecessary branches'@fin
the light of P’s own typing. < is in fact a typed strong bisimulation in the sense that Q means
they have precisely the same observable behaviexespt for the visible input actions at pruned
inputs, either branches or replicated channél$ius in particular it satisfies the following condition.

LEMMA 8 (pruning lemma).
(1) < is a strong reduction bisimulation in the sense that: (a) IKdWN and M— M’ then
M — N’ such that M< N’; and (b) If M< N and M— N’ then M— M’ such that
M’ < N
(2) <« istransitive,i.e. M< N and N< R imply M< R.

Proof. (1) is because, iM < N, the branches pruned froM can only be among those which
are never used bil, hence do not contribute to the reduction. (2) is by notirigvé pruneR to
makeN following the minimal typing ofN, and pruneN to makeM following the minimum typing
of M, then we can surely take off all branches and replicatedénjpomRin the light of the minimal
typing of M, and obtaindv itself. O

As we just observed< satisfies the much stronger property of being indeed a stosigulation
w.r.t. all typed transitions under the minimal typing of tleé-hand processes.

92

16.3. EPP Theorem and its Consequence¥Ve are now ready to state the main results of
this paper. Below we writ€ - o when the stored values mfollow the typing inl" in the obvious
sense. In (1) below) (A) denotes the result of replacing each occurrence of typgasgnt inA,
says[A,B] : a, with §: L. In (2), =ec denotes the equality induced by the unfolding/foldings of
process recursion (note they do not change behaviour upatagsbisimilarity).

THEOREM 7 (End-Point Projection). Assume4 is well-typed, strongly connected, well-
threaded and coherent. Assume further A > A andl” - 0. Then the following three properties
hold.

(1) (type preservationif I' - 4> Ais the minimal typing ofd, thenl’ - EPP(4, o) > L(A).

(2) (soundnessif EPP(4, o) — N then there existsl’ such that(o, 4) — (d’, 4’) such
thatEPP(4/, 0') < =recN.

(3) (completenesdj (o, 1) — (d’, I’) thenEPP(I, o) — N such thaEPP(l’, o’) < N.

COROLLARY 2. Assumef is coherent. Assume furthér- 4 > A andl + 0. Then the
following three properties hold. In (2) belows (ec is given as the transitive closure &f U =ec.
(1) (error-freedomEPP(4, o) does not have a communication error (812.2).
(2) (soundness for multi-step reductighEPP (4, o) —" N then there existd’ such that
(0, 4) =" (d’, 4') andEPP(4’, 0') < recN.
(3) (completeness for multi-step reductidh)o, 4) —" (o/, 4’) thenEPP(4, c) —="N
such thatEPP(l’, ¢’) < N;

Proof. (1) is immediate from Theorem 7 (1) and Corollary 1 (page 6&) and (3) are by
Lemma 8 (1,2) and Theorem 7 (2, 3), combined with the stantlarg argument and induction on
n. For example, for (2), the case wher=1 is Theorem 7 (2). Suppose the statement holds up to
reductions and assun&P (4, o) —"1 N. By definition this mean&PP(4, o) —"Ng — N for
someNy. Hence by (IH) there existd), such that(o, 4) —" (op, 4}) andEPP(4), 0p) < recNo.
By Nop — N and since< recimmediately satisfies the same simulation propertyasEPP (4, o') —
N” such thatN’ < recN”. By Theorem 7 (2) again we havey,.4}) — (o', 4’) such thaEPP(4’, o’) < N”.
By the transitive of < ggcwe haveEPP(4’, ¢’) < N’ as required. O

Several observations on these results follow.

REMARK 7.

(1) Corollary 2 (1) indicates, among others, once we can tipeck a global description
and ensures it is coherent, then its endpoint projectionsadtave type errors in their
mutual interactions. This gives a basic form of a guarantégamd” properties at runtime
through the static validation of global descriptions. P&t properties for validation
would include deadlock freedom, livelock freedom, and masi security properties.

(2) Corollary 2 (2-3) says that all and only interactions ihigh endpoint processes will be
engaged, however many steps they would take, are precisetyliespondence with those
specified by the original global description.

(3) In both Theorem 7 (2-3) and Corollary 2 (2-3), we can sitkan the reduction-based
simulation in Theorem 7 and Corollary 2 by annotating redurctvith associated con-
structors, e.g.

(AB,s,0p,V,X)
—

(o, A=B:s{op, v, X).l") (ax— V], 1)

similarly for the end-point calculus. This makes expliagitheach action in the original
global description corresponds to the action in its end fqmiojection.

The rest of this section is devoted to the proof of Theorem & p¥dve its three clauses one by one.

93

16.4. Proof of Theorem 7: (1) Type Preservation.The type preservation is proved in the
following three steps, after introducing an inference sgsfor a single thread of an annotated inter-
action, written™j 1. 1> 4.

(a) We relate the original minimal global typing with this péwe¢ad global typing, i.e. we
showl™ k| >Aff T = Ul andA = UA; where{T;} exhausts the threads in
(b) We then relate this per-thread global typing with the mirlityping of thread projections,
establishingT; I—Ir“inl >4 iff Ti Fmin TP(1, Ti) >Af for eacht;, whered' is the result of
replacing eacls/A,B] : a in Awith §: L.
(c) Finally we relate the minimal typing of mergeable processik the minimal typing of
the result of merging them, by showing a general statemejit; i, Ui P > Li A with
R > Pj for eachi, j € 1.
We start our inquiry from the following observation whicHates the lub in the inclusion ordering
(of the global typing) and the lub in the session subtypirfgh{e endpoint typing).

DEFINITION 28 (equi-input subtyping).We define the relatiom = 3 over closed types by
settinga C B iff aR B for a witnessing relatior®_ satisfying the same rules as in Definition 1 fer
(in 810.4, page 47) except for replacifgnc-1N) with the following rule:

B ~ Zicyslop(6).0f Vieldaoea
Zicsslopi(6).0i € B

(EQ-IN)
We callC equi-input subtyping

PROPOSITION15 (Equi-input Subtyping).

(1) Cis a partial order on types modubs.

(2) o C Bimplies botha € Banda < B.

(3) If a2 have an upper bound w.r.tZ, then they also have the least upper bound. Then
they also have the lub w.r.& and < and all these three lubs coincide.

Proof. (1) is standard and is essentially identical to the proofrepBsition 6. (2) is by noting,
for both € and <, the only difference is in the input rule. For (3) the existerof a lub given an
upper bound is as in Propositions 4 and 7. For the latter pyrf2) we know that an upper bound of
agp W.rt. Cis, their upper bound w.r.te and <. Now take the lub w.r.tZ, sayp, which has the
same input branches astha » and the join of their output branches. Take an upper bourd ef
w.r.t. €, sayp’. Then it also adds input branches, hence suBedyp’. Next take an upper bound of
aip W.rt. €, sayp”. Then it may take off some input branchesaf,. HenceB € B”, as required.]

As noted, to carry out Stefa), we use an additional typing system which, given an anndtate
global description and its thread, a minimal typing whiclsjigcific to that thread. The sequent of
this system is written:

r-'AacA

where4 is an (extended) annotated interactioris its thread, and /A are as given in §12.1 (fak
we use a slightly refined types which associate participgotination to session types, asiB|" a,

so that we can directly reconstruct global types from a s¢hefe types). The typing rules are given
in Figure 26, where we omit the obvious inverse communicatides. Fory in (GT-MTZERO)
and (GT-MTVAF) (U is the set of mutually disjoint vectors of session channeleg the proof of
Proposition 5, page 48 (as noted there, when terms treagesibterms of a term without free session
channels, then these groupings are uniquely determinell tyiping is done by fixing (distinct)
W at each type variable/inaction id from which the typing starts. IfGT-MTINIT-S1/2A/P)
and (GT-MTINIT-O), S denotes “self” whileO denotes “others”a denotes active ang denotes
passive, similarly for communication rules (here “self’hdées the typing of the target thread when
it is involved in interaction, the latter otherwise). Thedtment of recursion and recursive variables
follow the minimal typing system given in Figures 20, illcegtied in §10.4, page 46.

94

FTFASA-§A:B t=11 chgfn(l) tvar(B)={t}

(GT-MTINIT-S1A) r. ch@B (3)(Blend/]) FT At — B2 : ch(v§). 41> A

r-ac-A-§B]:B 1=1, chgf(l) tvar(B) = {t}

(GT-MTINIT-S1P) [, ch@B: (é’)(B[end/ﬂ) FTATL — B2:ch(v§). 4> A

r, ch@B: (o A>A-§A:Bp t=11 chgfn(l) tvar(B)={t}

(GT-MTINIT-S24) — =
I, ch@B: (§)(aLPlend/t]) FT At — B2 :ch(v§). 4> A

r, ch@B: (§aFA-A-§B]:p t=T12 ch¢fn(l) tvar(B)={}
I, ch@B: (§)(aUBlend/t]) FT At — B'2: ch(v§). 4> A

(GT-MTINIT-S2P)

r=tasA {§infc(d) =0 t1¢ {11,120}

GT-MTINIT-O
() M-TAL — Bu:chvs).4>A

rEtacA-SA:aj NFe@A:0; THx@B:8; sc{§ 1=11

T-MT -
(G Comm-Sh) YA — B :s(opj, € X). A>A-S[A]:sT0pj(6)).q;

r-*As-A-3B]:a; N-e@A:8; T-x@B:6; se{s 1=1
T AL — B2 :s(op;j, € X).A>A-§[B]:s] opj(6;).qj

(GT-MTCOMM-SP)

rE'AacA T-e@A:8; THx@B:0; séfc(d) 1¢{11,T2}
T AL — B :s(opj, € X).A>A

(GT-MTComm-0)

MN-x@A:86 TFe@A:8 T A>A
MrM-Tx" :=e@A. 4> A

(GT-MTASGN)

M 20 MiF 20

GT-MTSum ;
() MUl Ft 2 +7% 4> A U,

F~e@A:bool TH' 2.>A1 TH 240

GT-MTIF ;
() I -Tif e" @A then 4 else 4> Aq LA,

ME 2101 TR 2Dy fsc(Ag) Nfsc(By) =0

(GT-MTPAR) =
MUl - 41 |° 2> A100,

M A4 A, §s5[A B M AsA, §s5: 1

GT-MTRESL GT-MTRES2
() MFET(vs) A A, §%: L () MET(vs) A A, §%: L

rEtac A e L
T (vs) A>A

W={§} tfresh

GT-MTRES3
(ES3) W XAt XA Ui §[ALBI] 0 t

(GT-MTVAR)

Mr-XAtF' 2 A

GT-MTREC
() I Flrec XA. 4> solve(t,A)

w={s}

(GT-MTZERO) F 55 1§ (A Bilena

FIGURE 26. Threaded Minimal Typing Rules for Global Calculus

95

Below, when we write e.dl Fnin 4 >4, we assume the thread annotatiorrconforms to the
grouping of session namesAn(cf. Proposition 2). The calculatian;4; is done in the obvious way,
e.g. if we merges/B] : a ands[A] : then we ges/A — BJ : aLIP.

PROPOSITIONL6 (Threaded Typing for Interaction)Let {1;} exhausts the threads iA. Then
IMmin A>AIff T = Ul andA = LA such that, for each;, we havd; I—fr“inﬂbAi.

Proof. LetTl FinA>A andT; I—f\‘ﬁnﬂlDAi. By structural induction of7, we first show that
I €I andA; € A, following the typing of 4 inductively in both Figures 20 and 26. For ini-
tialisation, there are two cases in the original minimalitgy while there are four cases in the
threaded typing. (GT-MTINIT-S1/2,A/P) correspond td GT-MTINIT-1/2) and (IH). The case
when(GT-MTINIT-O) is inferred corresponding t@GT-MTINIT-1) is by induction and by noting
€ includes the subset relation. The case it correspond&TMTINIT-2), is immediate by induc-
tion. The case for communication is the same as the casetiafisation. The cases for assignment,
restrictions and inaction are trivial since typings do rediege in each case. Finally the conditional,
sum and parallel composition are immediate from inductigpdthesis and: being closed undeur.

Next we show the types inferred simultaneously for eacln I I—Iri]inﬂlDAi fully covers
those inferred i ,;, A >4, again by induction. This only matters (G T-MTINIT-S1/2 and
(GT-MTINIT-O), as well as(GT-MTCom-S) and (GT-MTCoMm-0O), where the shape of typing
differ. In each case, the non-threaded inferdneg,;,A>A is covered in one of theGT-MTINIT-S1/2
and(GT-MTCoMm-S), hence done.

These two results together shévandA in I ;. 4> A coincide with the merging df; andA;
for each threaded infereng 1. A-A,, O

Next we proceed to the stép) outlined at the outset of 816.4, page 16.4. Our purpose islaber
each threaded typing of a global description and the miniygihg of the corresponding thread
projection, bridging the global typing and the endpointigp For this purpose we use the following
observation. As always we consider typings under a speaifigging of session channels (which is
uniquely determined if a term is a subterm of a complete term)

LEMMA 9. Assume P, are not replicated processes angiR P,. Letl Fn,i, P4 (i =1,2)
and R LI P, is typable, all under the same grouping of session namesn The 'y FyinPLU P>
A1 UD,.

Proof. By induction on the generation rules afin Definition 21 and its corresponding rule
in Definition 20. The only non-trivial case is the merging oput branch. LeP < Q such that
P=sr>Zicjop(yi).P andQ = Us>> Zickop (i) - Qi. Then their merge is defined as:

o Zicankop(vi) . (RUQH) +
= s> | Ziegkom(yi)-R +
Zick\30m(Yi)-Q

which corresponds to KBL-IN in Definition 20. Safely neglecting the invariant part (whitas no
effect on the argument), we set:

(1) A1=8:%s]op(6).q;.

(2) Ay =8:%js | opj(Bj).Bj..
By assumptiorP, < Q; and, by induction hypothesiB, L Q; for i € 1 NJ has the type; LI 3. Hence
we knowP LI Q has the typd\; UA,. InT1 2, we may be assuming interactions with services, which
are treated similarly (using the rule for session invoaatioDefinition 21). O

sp> Zicgop (¥i) - P US> Zickopi(Yi) - Qi

PrROPOSITION17 (Thread Projection and Thread Typinghssume | is coherent and is its
consistent annotation. Thén }—EﬁnﬂDAi impliesT] Fmin TP(4, Ti)>4{ wherel'| changes the polar-
ity of service channel typings as needed ahib the result of taking off information on participants
from type assignments i (e.g.§[BJ : a becomes: a).

Proof. By induction on coherent, we relate the result of typinD; I—I\;inﬂlDAi in Figure 26,
on the one hand, and the result of taking (4, t;) by Definition 22 (page 86) and typing it by the
minimum typing in Figure 23 (page 64), using Lemma 9.

96

For (GT-MTINIT-S1A), consider the case when=11. By assumption we have
r="4ac-A-5A:B
which, by induction hypothesis, implies:
M Foin TP(A4, T)bA -§:B
Hence we have, usindMTINIT-OUT1):
I, ch@B: (8)(Blend/i]) FminC>hAt — B : ch(v§). 4> A

as required. SimilarlyGT-MTINIT-S1p) is reasoned usingMTINIT-IN).
For (GT-MTINIT-S2a), by assumption we have

I, ch@B: (ja-'a>A-§A: B
which entails, by induction hypothesis,
r,ch@B: (§a kTP, 1)>4-§:B
We now consider the typing for the thread projection of
4 =A" - B%2:ch(vs). 4.
We first observe:

Claim. a andf has an upper bound w.rit. in Definition 28.

This is because, if not, when we put the session initiatised'* — B2 : ch(v §), the threadr, at
ch and another passive threadcitwhich contributed tach@B : ($)a in the preceding derivation
(there is at least one by the existencechin the base) cannot be merged, since for them to merge
they should have exactly the same outputs after each cometuesce of actions which come out
as inputs for its dual interactions.

By the above Claim and by Proposition 15 (3) we know 3 = a \ 3, hence we have

I, ch@B: (§)(aLBlend/t]) - TP(Z, T)>4’

asrequired(GT-MTINIT-S2p) is reasoned by the essentially identical argumgBr-MTINIT-O),
(GT-MTCoMM-SA), (GT-MTComM-SP), and(GT-MTCom-O) are easy from (IH). For example,
for (GT-MTCowm-0), the thread projection ignores the prefix, which is pregisdhat Definition 22
does.

For (GT-MTSum), by assumption we have

ME 20 TiF >0

where the summand, hence the top threadggf, have the thread. We should consider two cases,
one whert’ = 1 (in which case the thread projection daeso the thread projection of the summands)
andt’ # T (in which case the thread projection dagps In the former case, the minimal endpoint
typing has the service typirdg, v I and the session typinty, v A,. First, for the former, sinc€ has
only output service typings (and assignments to term vergalvhich are trivially identical) the same
reasoning as Claim above shoWwsVv I, =1 Ul . For session typings, consider the interacting
(dual) behaviour which, since they are using the commoni@eshannels, should have the same
thread. Since they should be mergeable, they should offes@ime set of output branches at each
common reachable point in the course of interactions, heseally, the corresponding types i
andA; have the same inputs at each such point. Hence again we\hava, = A; LIA,, hence by
(IH) we are done. The case whehn T is immediate from Lemma 9 and (IH).

For the remaining case§GT-MTIF) is reasoned a§GT-MTSuM), the rules(GT-MTPAR),
(GT-MTRES1/2/3), and (GT-MTREC) are immediate from (IH), and botfGT-MTVAR) and
(GT-MTZERO) are vacuous by identical shape of the corresponding typitesr O

Finally we note:

97

PrRoOPOSITION18 (Typing for Merged Threads)Let 4 be coherent and assume that, for some
ch, we have(ti} = tpc(A4, ch). Thenl F,in TP(A, T;)>4 for eacht; € {1} implies|; i Fmin
L TP(A, ti)>LiA.

Proof. Immediate from Lemma 9 (note the order of merging does notenhy Proposition 12
(commutativity and associativity af). O

We now prove Theorem 7 (1). Take the consistent annotai@md assumér; } is _the threads of
4 (which we assume does not include free term variables fopl&iity). Sincell F™" 4 > A, we
have:

(104) Fi Fin A D> D
for eachr; € {1;} for which, by Proposition 16, we have ()Ij =T and (2)L;A; = A. By Proposi-
tion 17, we also have, for eache {1}

(105) M ™ TP(4, 1) > A
Now considerq containst; 3 as the threads for a serveratand consider
(106) Mk A O (i=1,2,3)
as well as
(107) M F™NTP(a, 1) > A (1=1,2,3)
By Proposition 18 we have
(108) L] riFm™ || TP, uw> || A
ie{1,23} ie{1,23} ie{1,2,3}
gives the replicated input ah. Now
(109) || T
ic{1,2,3}

gives the service typing &h and zero or more client typings, in addition to assignmenétiables,
as required.

16.5. Proof of Theorem 7: (2) Soundnesdg-or soundness, we observe:

LEMMA 10. Assume Px< P, and let PPy LiP,. Then P< P (i = 1,2).
Proof. Immediate by the construction, noting is compatible. O
Let 4 be coherent and assuntehas the threadd” = {1i}. Let their thread projections b@ def
TP(A4, 1) for eacht; € 7, which as a whole gives the indexed family of proces§&s}. Each
P (which is to be strict an indicé together with the associated procd3yis either a replicated
input with a service channel as a subject; or else. If it isgicated input, then it needs be merged
with other replicated inputs at the same service channekiwdhould be merged. If not, it is never
merged with other threads. We can now form a partition (aignbset) of thread projections:
(1) W partitions the family{R}: i.e. if §,S € W andS; # S then§ NS, = 0; and that
Uw={R}.
(2) If Se WandR,Pj € W such thai # j, thenP, andP; are (replicated processes with the
same service channel and hence are) to be merged in the ehgpéection.
GivenW¥, the endpoint projection ofl is given as the result of merging processes in éaeh¥ (let
the result beéPs) and placing them in each participant, i.e. wittbeing the set of participants, and
W(A) (for eachA € ©P) being the subsets &f to belong toA:

(110) EPP(Z, 0) & vi)(MacrAlNscwia)Pelo,)

98

Note reduction is never affected by participants informmtas far as projected processes go (since
redexes are always inter-participants or involves onlyrglsi participant). Thus for legibility we
neglect participant information from (110) and consider ithitial configuration:

(111) EPP(4, 0) £ wi)(MNsew | | R, ©0)

PeS
whereo aggregates all local stores, assuming all local varialbiesliatinct, without loss of general-
ity. Since we can easily regroup processes and state inticipants, and this grouping never affects
dynamics, this does not lose generality.

We show soundness using the reduction rules from Figure &je p7, adapted to the shape
of (111). These rules are based @mniT), (Com), (ASSIGN), (IFTRUE), (IFFALSE), (Sum) and
(Rec), directly closing them oke and reduction contexts. Calling these adapted rules witlséime
names as the corresponding ones in Figure 21, we list thésseinuthe following (note that, as noted
above, we are assuming variables are globally distinctabthere is no need to local assignments).
BelowC] | denotes a reduction context, i.e. a context whose hole ismai¢r any prefix (thus we
can always se€[P]; = (v§)(P|R) for someR ands].

P=G[1ch(§).Q| chv§.R P =C[Ich(®).Q| (v§)(QIR)

o (Po) — (P,0)

(1FTrug) D= Gilif ethen Pl(ssce) i (E:j)cr[m] okeltt
(oo PGSR P=GiP

(Ree) P=ClreeX.Q) (GQl(recX.Q)/X]). o) — (P'. @)

(Po) — (P,0)

We omit (IFFALSE) (which follows (IFTRUE)) and the symmetric case ¢8um). We can easily
check these rules give the same reduction relation as tihhoSeyure 21 when we incorporate par-
ticipants. In the following we reason by induction on theghtiof derivation of these reduction
rules, neglecting those used for inferrigg(the induction on reduction rules are only non-trivial for
recursion, since all other cases are the base cases).

In all of the following cases, we set:

4= (Vf)nogignﬂi
where eacls; is prime, i.e. is not itself a non-trivial parallel compasit. For simplicity we safely
neglect(vf) from now on (since the hiding does not affect reduction) amaseder onlyMg<j<n4.

Note in this case the endpoint projection can
We start from(INIT). Then the redex is a pair, which is given by an input:

1ch(®.Q £ | | 1ch(§.Q =tch@®. || @ ({lch(§.Q}ew)
o<i<n 0<i<n

and an output:
chvdRe {ch(vdR} ({ch(v3R} e W)

99

Thus we can write down the reduction up=o
(112) (Ich(§.Q| ch(vdR| S o) — (Ich(§.Q| (V§(QIR) | S o)
Note we are neglecting participants for legibility, as stgied above.
Now ch(v §)R come from the thread. Thent should be the active top-level thread (since if not
R cannot be an output, by wellthreadedness:(G8) of Definition 14, page 75). Hence there is a
complete interaction itd, say.4g, which starts front and its dual passive thread, sdy Sincet’ is
a passive thread starting from initialisation dl its thread projection is i§!ch(§).Q;}, which we
let (w.l.o.g.) th(8).Qp. Hence we can write

Apo=A"—B": ch(v§). 4}
which induces the following reduction:
(113) (4, 0) — (v§)(A|Mi<i<nFi, 0)
Let the term on the right-hand side above, without includwg), be 4’. Note 2’ has the same set

T of threads as that of (it is possibler no longer occurs i@, in which case we safely stipulate it
exists a®)"). Consider all the thread projections frofii. By (113) we have:
vii € (T\{1,U'}). TP(4, 1) =TP(Z, 1).
Fort andt’ we have:
TP(A', ")=Q and TP, 1)=R

Note Q is no longer a replicated processdior any service channel, since it cannot be a passive
input anymoreR is not a replicated process at a service channel either Bitahould have given a
fresh thread in?’, nott (by (G1), freshness, Definition 14). Thus we can consttdtfor 2’ as we
constructed¥ for 4 as the same collection of sets of processes except

(1) We replacg{ch(V§)R} € W with {R} € W'.

(2) We lose ¢€h(8).Qp from {!ch(8).Qi} € W, obtaining{!ch(5).Q; }1<i<n € ¥, and instead

add{Qo} eV,

(3) Otherwise’ remains identical a¥.
We thus obtain the following endpoint projection @ $).4’,0) as (neglecting participants as we
stipulated):
(114) L] 'eh(3).Qi | (v9(QIR) | S

1<i<n
together witho. We now compare (114) with the right-hand side of (112), #wutt of reducing the
EPP of4. By Lemma 10 we have]i<ij<n!ch(8).Qi < |g<i<n!ch(8).Qi as well axQp < |p<i<n Qi,
hence we are done. o o o
For (Cowm), the reduction of the endpoint projection @fcan be written as:
(115) (sZiopi(¥i)-Qi | Sopj(€).R| S 0) — (Qj [R]S 0)
Again the thread, say, for Sop;(e).R | Sfor which we have{sop;(e).R} € ¥, cannot start from an
intermediate node, so it is a top-level active thread. Therthread corresponding 82;op;(Vi).Q;
should be its dual. Let the prime interaction starting frdrase two threads héy. Then we can
write:
Ay =A—B:s(op, & Y). 4

by which we in fact know the sum we assumed in (115) is a sing/¥ti.e. we can restrict our
attention to:

(116) (sop(y)-Q[%opj(€).R|S 0) — (Q[R][S 0)
14Only in a top-level immediate in-session communicatiore direct endpoint projection of its passive
thread becomes a singleton sum (note there can be no othej.wBy sums and conditionals, non-trivial sums

arise, as is usually the case in endpoint projections of mgan protocols. Concrete examples are given in
§16.7 and 16.8.

100

Now 4 has the following reduction:
(117) (4, 0) — (A|N1<i<n, O)
where, by construction, we haVeP (4], 1) = QandTP(4;, 1) = R, which are not to be merged
with other threads (since again they cannot start from aiy@s®rvice initialisation), otherwise
remaining the same ag. Thus in this case we have the precise correspondenceheaesult of
reducingEPP (4, o) is preciselyEPP(4’, o) up to=.

For (AssIGN), we have the reduction of the shape:
(118) (x:=eQ|R 0) = (Q|R 0)

which meansc:= e.Q comes from the initiating active (and passive) thread,s@f an interaction
of the form:

2 = X :=ed)
Hence (118) is precisely matched by the global reduction:
(119) (4, 0) — (A|M1<i<n i, 0)

By observingTP(4'p, 1) =Qand for each; € T such that; # T we haveTP (4, 1) =TP(2/, 1),
we are done.
For (IFTRUE), we can write the reduction as:

(120) (if ethen Py else P;|R, 0) — (Py1|R, 0)

whene evaluates to true ig. Since{if ethen Py else P} € W (i.e this is a singleton thread) we know
there is a prime4g of the following shape:

29 %' ife@Athen g else Aps
Thus we have the global reduction:
(121) (4, 0) — (Ay|M1<i<n A, 0)
Note we have losfy;. If we write T for the corresponding initial active (and passive) threéd o

Ap, then we have, b P(A4y, 1) = if ethen Py else P, and by the definition of thread projection for
conditional:

(122) TP(Ay, 1) = Py

Now supposes,..,Tm occur in 4gs. For simplicity let us just consider; and consider its thread
projection at4y (it can occur in other; with i # 0 but they remain invariant hence simply later
added in parallel). Iy we had:

TP(A, 11) = TP(Ant, T1)UTP(Aos, T1)
hence the thread projection of in /‘216[is < -smaller than that ofq in 4y, that is, for suctt:
TP(Z, 11) < TP(4, T1)
Since the projection of other threads remain identical, nak
Vi € T\{1}. TP(Z, 1) < TP(4, 1)
By (122) we are done(I FFALSE) is the same af FTRUE).
For (SuM), the original reduction is
(123) (PL® Py, 0) — (P1, O)
which means we can set
A E ay+ay
Corresponding to e (122) in the case(tf TRUE) above, we have
TP(Ay, 1) = P

The rest is identical with the reasoning fdFTRUE).

101

Finally for (Rec), we have the reduction:

(124) (recX.Py| Micicmrec X.B |R, o) — (S 0)

from

(125) (Polrec X.Py/X] | M1<i<mrec X.R |R, 0) — (S, 0)

where we specify all recursion terms coming from the samarssan in the global process, say:
Ay = recX.4.

By (125) we know, writing?’ gef [rec X.R/X]:

(126) (Mo<i<mP/ [R, ©) — (S d')

since if there is a reduction of a folded version, it is mecdtanto check that its unfolded version
also has the corresponding reduction. Further we can eetsdgk that the latter is inferred by no
more inference steps than the folded version.

Now we observe, assuming eda‘ncomes from the projection af, we observe, for suchy:

£ L TP grecX.A/X], 1)
The unfolding can increase fresh passive thread® gfcontains initialisation, which will be trans-
lated into replicated processes but these do not changeshking processes (because an exact copy
of such a passive thread already existgljand notingPLI (PLIR) = PLIR). By induction we know

(127) (E,0) — (F,0d)
such that

S< =recEPP(E/, 0).
By (127) we also have:

(4,0) — (¥,0)
hence we are done. This concludes all cases.

16.6. Proof of Theorem 7: (3) CompletenessCompleteness is by induction on the derivation
of reduction in the global calculus. As before, we considiaped reduction rules which are taken
modulo structural equality and reduction contexts, whiehexjuivalent to the reduction rules in Fig-
ure 18 (page 39). We list these adapted rules in the followisgg the same names as the original
rules in Figure 18. As before, we assume all variables atenditsincluding across participants, so
that we can write e.go - el V instead ofo - e@A |} V. We again writeC; [] for a reduction context
in the grammar of interactions.

102

I =G[A—B:b(vd.lo] I'=C[(v o]

) @l — (@)

o S
oo e
(IFTRUg) L= Crlfethen lo (G’C"S’T)'Oj (clj’i)cr[lm} oreltt
(Req) L =ClrecXlg] (0, Gli[(recX lo)/X]) — (o', 1)

(o,1) — (d,1")

We omit(IFFALSE) and the symmetric case. Note the rulBsRrR) and(RES) are no longer necessary
since they are absorbed in the above rules. Up to the applicatf the rules of=, all rules above
except(Rec) are the base cases. In the following reasoning, we use theusbannotated version
of these rules (which preserve thread labels across renfyaixcept when a new top-level parallel
composition arises as a result of reduction, we take offitel).

In the following, by induction on the height of derivationge show if

(0,4) - (¢,

then
EPP(l, o) — (P',d)
where
(128) EPP(4, ¢') = (P},0') such thaP’ < = P

Above, as in the proof of soundness, we neglect particigafdismation in the endpoint processes,
and aggregate the local states intassuming all local variables are distinct. For simplieity also
abbreviate (128) to:

(129) (P,0) < =c EPPA, o)
We set

4 = (Vf)ﬂogignﬂi
where eachy; is a prime interaction (i.e. an interaction which does nattaim a non-trivial top-level
parallel composition). Henceforth we safely negl@di). As before, we le to be the set of threads
andW¥ to be the partition of the family of thread projections wtihése threads. We wri@ S, ... for
the elements o¥.

For (INIT), we can set:

A0 &' A - 1oBUChVE) .4

and consider the reduction:
(130) (4,0) — ((v9)A|Ni<i<nA;, 0)

The endpoint projection of4, o) contains a pair of an input and an output corresponding to the
redex of this reduction:

1ch(8).Q % Lipcicn!ch(8).Q1 = 1ch(8). Uo<i<n Qi ({1ch(9).Qi}ocicn € W)
and an output:
ch(v§Re {ch(v§R} ({ch(v§R} € W)

103

Then we can write dowrdl as th(§.Q | ch(v§).R| S Thus we have a reduction:

(131) (Ich(§.Q| ch(vdR| S o) — (Ich(§.Q| (V§(QIR) | S o)
By the exactly identical reasoning as in the correspondasge én the proof of soundness, the residual
in (130) and that in e (131) are related in the way:
EPP((v8)Ag|Mi<i<ndi, 0) < (1ch(9.Q[(v§)(QIR)|S o)
hence as required.
For (Comm), assume without loss of generality we have

4 def Ao, g s(op, €, X). 4

and consider the reduction:
(0.2) — (0, A|Mi<i<nA)
whered’ = o[x@A — V] with:
C@AFel V.

The thread projection ofly to 1o has the fornsop;(e).R (when the branching is a singleton we omit
the symbolz, similarly henceforth) such thdsop;(e).R} € W, while the one onta; has the form
sop(y).Q. Without loss of generality (cf. Proposition 11) we regagd is used only indp. Thus we
can set:

EPP(4, 0) = (sop(y).Q|Sopj(e).R|S 0)
hence we have:
(132) EPP(4, o) — (Q|R|S ¢
(in (132), the update of the store is safely done due to opulstiion that all local variables are
distinct.) By the same reasoning as in the corresponding icathe proof of soundness, we know

EPP(A|M1<i<ni, sigmd) < (Q|R[S o)
as required.

For (ASSIGN), we can set
def

4y = X@A:=e

We consider the reduction:

(133) (0,4) — (0, A)|Ni<i<ni)0’

with appropriates’. The thread projection ontohas the shape:=eTP(4;, 1), hence we have
the reduction:

(134) (x@A:=eTP(4y, 1)|R o) — (TP(4), 1)|R 0

As in the corresponding case in the proof of soundness, (@i84ys that all thread projections af
except att remain invariant from that afl, whose aggregate & and the projection ontoprecisely
matches that of the residual of (133), hence as required.

For (IFTRUE), we can set

2 L' ir@Athen A else A

with which we have the reduction:
(1395) (4, 0) = (Ax|M1<i<n, 0)
Observing
TP(Ao, 1) £ ifethen TP(AY, 1) else TP();, 1)
we have the reduction for the endpoint projection:
(136) (ifthenelse@P(4y, 1)TP(Ay, 1) |R 0) — (TP(Ay, 1) |R o)

104

wheree evaluates to true io. By the reasoning for the corresponding case in the sousdmesf,
Rin (136) may contain replicated inputs which are the resutherging complete threads fror,; .
Thus we obtain:
EPP(“{ZIC/)[“_llSiSn’qi’ 0) < (TP(/{ZIC/)[’ T) | R, 0)
as required.
(IFFALSE) and(Sum) are similarly reasoned.
For (REC), let:

2 % rec X. 4.
Further assume we have:
(137) (A, 0) — (Ag|Mi<i<nFi, 0)
The reduction (137) comes from, by the recursion rule above:
(138) (Apl(recX.Ap)/X],0) — (45,)
Now the endpoint projections oip has the form:
(139) EPP(4, 0) £ ((NR)|R o)
whereRis a collection of replicated processes and e@dis not replicated and has the shape:
P % rec xR
We then consider the endpoint projection of the unfoldingigf
(140) EPP(F(recX.3)/X], @) % ((MR[R/X])|R o)

Note the right-hand side of (140) is timetimes unfoldings of (139). Thus by induction hypothesis
and applying the recursion rule in the endpoint processi@mes we obtain:

(141) EPP(4, 0) — EPP(4§|M1<i<n%, 0)

as required. This exhausts all cases, establishing coemgss.
This concludes the proof of Theorem 7.

16.7. An Example of Endpoint Projection. In the following we present an example of the
endpoint projection to illustrate the formal notion intuaedd in the preceding sections. We use a
fairly large toy example involving five participants. Firste explain the example in English; then
we introduce the description in the global calculus; finalg project the description to endpoint
processes.

Global Description in English. The example is an extension of the buyer-seller example-intr

duced in section 2. The participants involved in this prot@re

(1) Buyer (B)

(2) Seller (9

(3) Vendor (V)

(4) CreditChecker (CC)

(5) RoyalMail (RM)
The protocol proceeds as follows:

(1) Buyer requests a serviagcc for company check to the credit checketeditChecker by
sending its name.
(2) Atthis pointCreditChecker can either give a positive or negative answer.
(3) If the answer is positive:
(a) Buyer asksSeller for a quote about produgtod;
(b) Seller then asks/endor for servicechy
(c) Seller starts recursion and askendor for a quote about produgtod;
(d) Vendor replies with a quoteguote;
(e) Seller forwardsquote to Buyer increasing it by 10 unitsgliote+10);

105

(f) if the quote is reasonablegasonabléquote + 10)) then:
(i) Buyer sendsSeller a confirmation quoteOK) together with the creditcted);
(i) Seller then contact€reditChecker for checking the credit;
(iii) If the credit is good then:
(A) Seller contactsShipper (servicechgy);
(B) Seller sends the delivery address;
(C) Shipper sends a confirmation;
(D) Seller forwards confirmation t@uyer;
(iv) If the creditis bad:
(A) CreditChecker tells Buyer;
(B) Buyer tells Seller terminating the protocol;
(g) if the quote is not reasonable the protocol goes back ittt Bo;
(4) Ifthe answer is negative then the protocol terminates.

Global Description in the Calculus.The global description consists of several components for
readability. We directly give annotated interaction. Thaimdescription is:
1. B! —CC?:checs.CC?—B!: s(ack).
2. B1—CC2: s{companyCheck, sellerName, compName).
3. {
4, CC?— B! s(good) . lgood
5 +
6 CC2—B!: s(bad).0

¢

}

wherelgoog in Line 4 is:

1. B'—S:chgt. S B :r(ack).

2. Bl-S8: t(quoteReq, prod, prod) .

3. S vé:ichr.

4. V4*-SP:r(ack).

5 recX3.{

6. S —V*:r(quoteReq, prod, prod).
7. V4 S%: r{quoteRes, quote, quote).
8. S — B! : t(quoteRes, quote + 10, quote).
9. if reasonabléquote) @B then

10. Bl S3:t(quoteOK, cred, cred).
11 S CC%: cheeu.

12 CC®— S : ulack).

13 S CC® : u(personalCreditCheck, cred:adr, cred:adr).
14.

15. CC®— S u(good) . I/ 404

16. +

17. CC®—S%: u(bad).

18 S — B! : t(yourCreditlsBad) .0
19.

20. else B! — S : t{quoteNotOK) . X3
21}

106

l inli e
wherelg,, in Line 15 is:

S R0 chgp.
R6—S3: p(ack).
S — RO : p(deliv, adr, adr).
R6—S3: p(conf).
5. S$*—B!:t(conf).0
We can check these descriptions are typable, strongly cteehewell-threaded and coherent. For
connectedness, the descritption given above uses a dokef As we discussed in the long version,
many of these acks are in fact unnecessary by using a relateshof connectedness.

> wbh P

End-Point Projection of the Global Interaction. Following the definition of EPP in the paper,
we first project the global description onto each thread. filseone isBuyer’s only thread.

TP(I, 1) = chcc(VS). s> ack().S<icompanyCheck(sellerName) .
{ si>good().chs(Vt).t > ack() .t < quoteReq(prod).
rec X. t > quoteRes(quote) .
if reasonabl¢quote } then T < quoteOK(cred) .
{t > yourCreditlsBad)
+
t>conf()}
else T < quoteNoteOK() . X
+
s>>bad().0 }

Note this thread starts before the recursion and go throngide the (global) recursion. Thus the
projected endpoint behaviour also contains recursion.

The next projection is onto the first thread OfeditChecker (note this participant has two
threads, 2 and 5).

TP(l, 2) =!chee(s).S<ack().s> companyCheck(compName).
{s<1good().
2
S<bad().0 }

Note no recursion is involved in this thread projection, glyrbecause the thread 2 does not occur
inside the recursion.
Next we jump to Thread 5, which is another componenteiitChecker.

TP(l, 5) =!chee(u). U< ack().ur> personalCreditCheck(cred:adr)
(U<t good()
+
U< bad()

Note the process does not include the recursion either. i$tiscause it is inside a recursion and it
initiates a new thread there. As a result the code is iddntiith the projection onto Thread 2.

107

We now move to the projection onto the unique threa8eler, which is Thread 3.
TP(I, 3)=!chg(t).T<ack().t > quoteReq(prod).chy (vr).t > ack().
rec X. T < quoteReq(prod) . r > quoteRes(quote) .
t < quoteRes(quote + 10).
{t> quoteOK(cred) .chcC(vu).ur>ack().
U< personalCreditCheck(cred:adr) .
{ur>good().chr(V p) . pr> ack()
P<deliv(adr). p> conf ()T < conf()
+
ut> bad() .t < CreditlsBad() }
+
t > quoteNoteOK{() . X

As before, this thread starts outside of the recursion irgtbbal description and is also used inside,
so that both the recursion and the recursion variable aré asehey are, leading to the recursive
behaviour of the process. Note how the use of session furgciie a way to handle recursion appro-
priately in EPP.

The projection onto the unique threadv@ndor follows.

TP(l, 4) =!chy(r).t <ack().
rec X.r > quoteReq(prod) .T <t QuoteRes(quote) . X
Finally we end with the projection onto Thread 6, giving tia@e behaviour oRoyalMail.
TP(l, 6) =!chr(p).P<ack().pr> deliv(adr). p<conf()

As before, Thread 6 does noon contain recursion since itligifiside the (global) recursion, initi-
ating a thread there.

As noted, there are two threads (2 and 5) that belong to the stams of equivalence i.e. they
are part of the same service chandeic. This means that we must merge the two threads in the final
EPP. By applying the merge operator, and noting they areeatliylmergeable, we get the following
process:

Icheg(u) . U< ack().
personalCreditCheck(cred:adr) . (U< good{) & bad())
up +
companyCheck(compName). (U<1good() ¢ bad())

By which we have arrived at the endpoint behaviours of altipigants realising the original global
description.

The projection works because of the linear usage of charingide each session and service
channel principle, as well as the three well-structuredremnditions. We believe many business
protocols conform to these conditions (modulo relaxatiboomnectedness we discussed in the long
version). How these conditions can be extended in dis@gliways to allow more “untamed” pro-
tocols (such as those involving exceptions) to be treatetiertheory, is an interesting subject of
further studies.

16.8. Another EPP Example.We now consider a slight modification of the interaction con-
sidered throughout the whole paper, i.e. where we have tbegtonnectedness property

108

Buyer — Sel | er : B2SCh(s).Sel | er — Buyer : s|AckSessi on].
Buyer — Sel | er : s|Request For Quot e].

Sel | er —Buyer : s(Quot eResponse, Vv, quot e, Xguote) -
(Buyer — Sel | er : s[Quot eRej ect | +
Buyer — Sel | er : s|Quot eAccept].
Sel | er —Buyer : s(Order Confirmation).Buyer —Sel | er : s(AckConfirmation).
Sel | er — Shi pper : S2ShCh(s'). Shi pper — Sel | er : s[AckSessi on].
Sel | er — Shi pper : ' (Request Del Detai | s, Buyer, Xgjent)-
Shi pper — Sel | er : &[Del i veryDetails,DD,Xpp)].
Sel | er — Buyer :s[Del i veryDet ai | s,%pp,Xpp])

Note that we basically added few more interactions, jusetpkthe whole interaction strongly con-
nected. By this we can then give the encoding

Buyer {B2SCh - ny (s) .st> AckSessi on - ny.

s<tRequest For Quot e - n3. s> Quot eResponse - Na(Xquote) -
s<1(Quot eRej ect -ng |

Quot eAccept - ng.s> Order Confirmation-ny.s>AckConfirmtion-ng.
s<iDeliveryDetails-nip)}y |

Sel I er {B2SCh - ny(s) . s> Request For Quot e - n3.s<1AckSessi on-ny.
S<1Quot eResponse - Na(Vquote) -
s> (Quot eRej ect -ng +

Quot eAccept -ng.s<1Order Confirmation-ny;.s<tAckConfirmation-ng.
S2ShCh - ng(s') . s> AckSessi on - my3.

g <Request Del Det ai | s - nyo(Buyer).s<iDel i veryDetail s -ny1(Xpp)
st>Del i veryDetails -nio)}p |

Shi pper {S2ShCh - ng(s') . s<1 AckSessi on - ny3.

g > Request Del Det ai | s -nyo(Xgjent).S<1DeliveryDetails ~n11(DD)}y

109

17. Extension and Applications

17.1. Local variable declaration. We consider extensions and applications of the theory of
EPP. First, we augment the syntax of global/local calcuthwaine useful constructpcal variable
declaration

newvar X@A :=ein | newvar X.:=ein P

This construct is indispensable especially for repeatetigcable behaviours, i.e. those of services.
Suppose a bookseller is invoked by two buyers simultangpaakth asking a quote for a different
book. If these two threads share a variable, these two resjug get confused. The use of local
variable declaration can avoid such confusion. The dynsiamidl typing of this construct are standard
[41]. For endpoint projection, it is treated just as assignment

17.2. Intra-Participant Interaction. In §10.1, we demanded that, in the grammar of service
typing, A # B in §A, B]. This means well-typed global terms never have an intréigigant interac-
tion. This is a natural assumption in a business protocatiwvprimarily specifies inter-organisational
interactions: however it can be restrictive in other cotgexJnder connectedness (whose definition
does not change), we can easily adapt the EPP theory to thusimt of intra-participant interac-
tions. First, the typing rules in Table 19, page 47, takeg DEomMINV) and refinegTCom) so that
the typingsfA, B] : a always reflects the direction of the interaction just inéekr This allows us to
treat the case wheA andB are equal (we demand interacting parties have distincatt®e The
key change is in well-threadedness. Whega: B, the condition(G2) (session consistency) in the
definition of wellthreadedness is problematic since we ddnow which of the two threads should
be given to which participant. However stipulating the lazusality condition(L) in Definition 14
(page 75) solves this ambiguity. We reproduce this conaitielow.

Local Causal Consistency:lf there is a downward sequence of actions which starts froractive
threadt and ends with an action in whiahoccurs for the first time (i.et occurs in no intermediate
actions in the sequence), then the latterccurs passively.

Note that, by Proposition 10, this condition isansequencef (G1-3)in the theory without intra-
participant interaction so that we are not adding any exirestraint to inter-participant interactions.

17.3. Name PassingAn extension which is technically significant and practicalseful is
the introduction otthannel passingChannel passing is often essential in business protoéslsn
example, consider the following refinement of Buyer-Sdfestocol.

Buyer wants to buy a hardware fror@eller, but Buyer knows noSeller’'s ad-
dress on the net, i.e. it does not kneeller's service channel. The only thing
Buyer knows is a service channbérdware of a DirectoryService, which will
send back the address ofSzller to Buyer which in turn interacts with that
Seller through the obtained channel.

In such a situationBuyer has no prior knowledge of not only the seller's channel babahe par-
ticipant itself. In a global description including its tyyj, participant names play a basic role. Can
we leave the name of a participant and its channels unknodstiihhave a consistent EPP theory?
This has been an open problem left in WS-CDL’s current sgestifin (which allows channel passing
only for a fixed participant). Below we restrict our attemtito service channel passing, excluding
session name passing (which poses an additional techasta P4)).

First, at the level of he endpoint calculus, it suffices to tmechannel passing in the standard
T-calculus.

DirectoryService(s).s(y).y(t).P

which describes the initial behaviour Bfiyer. Notey is an imperative variable, so thegft).P first
readsthe content of then uses it for communication. The typing rules are extdraeordingly.

110

In the global calculus, we introduce a syntactic variablealled aparticipant placeholderfor
denoting anonymous participants. For example we can write:

A=Y xS Y =Y :slop, € y).I
The newly added — Y : x§.1 intuitively says:

A starts a session with session nanesn the service channel stored in x at
the location A.
The participant at which the service is offered is left unkndy placing a placeholdéef. However
this will be instantiated once the variabla@t A is inspected. For examplefis evaluated teh@B
in the store, the interaction takes place aé\in B : chS. 1.
As an example, we present the buyer-seller-directory seedescussed above:

Buyer — Directory : hardwares.
Directory — Buyer : s(sell, hware@amazon.co.uk, X).

(Buyer — Y : xg.Y — Buyer : §(OK, data, y) |

”m

Buyer — Directory : S(more, ™, 2).
Directory — Buyer : s(sell, hardware @pcworld.co.uk, X).
Buyer — Y’ : xd’ .Y’ — Buyer : §' (OK, data, y))

Note that, depending on the channel sent fiinectory, Y andY’ are assigned to different partici-
pants.

The dynamics of the global calculus adds the rule which sfer

(0, A=Y :x5.1) = (0,(v8) I[B/Y])
whenever we have @A(x) = ch@B.

For types, we first extend the basic tyfewith (§)a. We then add, with the obvious extension
to the syntax of types:

IEx@wW : (5a FrElsA-SWo, W]t a
FrMN=wW, —Ws:x8.1>A
Other typing rules can be extended to deal with terms coinigithe participant variabl¥ in the
same manner.

Finally, for the EPP theory, we need no change in the notiosooinectedness. For well-
threadedness, we first annotate placeholders regardmgd e- Y : x8.1 as the start of a new thread
forY, so we annotate it a&'* — Y2 : x§.1 with 15 fresh. The definition of well-threadedness remains
the same. Coherence however needs additional considerdte variablex@A can store different
channels from different participants. For this purpose e @ typing system which records a possi-
ble set of assignment, in the shag@W; : C whereC is a set of channels which may be instantiated
into C. If some concrete channel is @ the behaviour of that channel becomes constrained by co-
herence. This s& is inferred, starting from some fixed set, by addaigas inx@w : CU{ch@B})
when we infer, e.g\W, — W5 : s(op;, ch@B, x).l, whereW can be either of participants or place-
holders.

We give a flavour of how this extension works by the end-poiojgztion of the example above.
We first consider the annotated interaction for placehslder

Buyer! — Y3:xd.Y3—Buyer! : §(OK, data, y)

In the projection of this thread, we have placed a holhich should be substituted with the appro-
priate service channels.

TP(4, 3)=!_(5).9 <OK(data)
Thus, checking coherence consists in updating the definitiadhe functionthreads which induces
the thread equivalence classes. But what equivalencesslas®uld threads 3 and 4 belong to? We
can use the prediction of all the possible valyesn assume at runtime, i.sware@amazon.co.uk
andhardware @pcworld.co.uk. We have to make sure that thread 3 belongs to tith4, hware) and

111

tpc(4, hardware). Then, if we are end-point projecting &mazon.co.uk we will substitutehware
to _ in both thread projections, and if we are end-point projegticworld.co.uk we will substitute
hardware instead.

17.4. Conformance.By relating global descriptions to their local counterpdinie presented
theory allows us to make the best of the rich results from theysof process calculi. One such
application isconformance checkinand its dynamic variant, runtime monitoring), discussed i
Section 6. Our purpose is to have a formal criteria to say ¢llerounication behvaiour of a program
P conforms to a global specificatidn

In process algebras, conformance checking verifies whétledvehaviour of a process follows
that of a specification, the latter also given as (or repredd@ as) a process. As a theoretical basis
of the notion of conformance, we can use behavioural theaigeh as (inverse of) simulation or
bisimulation. In the present context, our purpose is tofyemhether an implemented system, say
P, conforms to a well-typed description in the global calsulurhrough the use of the end-point
projection, we can reduce this problem to the conformanteden endpoint processes, allowing us
to use the standard theory. We illustrate one basic instiartte following.

The conformance checking we consider starts from the usgpef information. Letl be a
global description ané be a participant whose behaviour we are interested inSlbetan EPP of
ontoA. LetP be a program which is supposedly implements the specificati the participanf.
Since the end-point projection generates a process whpsgtgoincides with that of the original
global description, we can first check whetlecan be typed under the minimal typing associated
with S. If we cannot, ther® does not conform tob.

Once we know the typing d® conforms to that 0§, we can proceed to validation of behavioural
conformance. As an example, Rbe given by:

QuoteCh(vs) . s> Quote(X) .
if (x < 100) then 5<1 Accept() else S<1Reject()
which may be used in the following configuration:
Buyer[P] | Seller[! QuoteCh(s).S<1Quote(300).
S>> (Accept() + Reject() + Restart())]

Suppose we wish to check whether tRisas the behaviour @uyer, conforms to a global specifica-
tion given as follows.

Buyer — Seller : QuoteChs.
Seller — Buyer : s(Quote, 300, X).
Buyer — Seller : s(Accept) + Buyer — Seller : S(Reject)
We have already seen the end point projection of the spetiificabove is given as follows.

Buyer[QuoteCh(Vs). s> Quote(X) .
(S<1Accept() ®S<Reject())] |

Seller[! QuoteCh(s).5<1 Quote(300) .
s> (Accept() + Reject())]

Let the endpoint process inhabitifgyyer above to beS. First, we can check the typability quite
easily, in the sense th&tis typable under the minimal typing & For example, the minimal type
for the channeQuoteCh in Sis given as

s! Quote(int) s | (Accept(null) + Reject(null))

Call this typea. Thena is not the minimal type ofP at the same channel, but it is indeed a type
assignable tah.

112

Second, on the basis of well-typedness, we check the coafarenof behaviour using a typed
transition relation. The transition we consider has theisatof the form:

(M- (Q,0)>4) —— (MF(Q,d)>4)

Following the framework in6, 55, s typedin the sense that we only consider those actions
deemed possible by andA. In particular, ifl" or A specifies input branches which are less tigan

then inputs at the extra branches do not take place. We wlﬁ'cte‘or the standard weak transition
abstracting the silent transition. We can then define tHevi@hg conformance relation (we include
typability: as always we fix an appropriate grouping of freesion channels if any).
We say a type relatio® over typed terms in the endpoint calculus iweak
conformanceiff, wheneverl - PyR S > A, we have: (1) andA are the

minimal typings ofS, and (2)(I - P> A) LN (I F Py>4) implies (I +

S A) = (I + § > A) such thal - PiRS, > A. If T - PyR S for some

weak conformanc&, we sayPy conforms to &
Thus (apart from typability) the conformance Rf to S says that all visible behaviours 8§ are
within what is specified irf. We can indeed check that, fBrandS above,P conforms toSin this
sense. Thus this conformance is about safety: dependinigeoapplication needs, we may as well
use a more stringent notion of conformance.

In summary, let be a global description consisting of the participAres well as other partici-
pants. Suppogeis a program which implemen#ss behaviour. Then we can check the conformance
of P against the specificationby projectingl to A, which we callS, and checkP conforms toS,
using the conformance relation noted above. The conformahn® to S may be checked through
either hand-calculation (coinduction), model checkingchranical syntactic approximation, or run-
time monitoring.

113

18. Related Work

18.1. Global Descriptions of Communication Behaviour (1).As far as we know, this work
is the first to present the typed calculus based on globalrigéisn of communication behaviour,
integrated with the theory of endpoint projection. Globathods for describing communication
behaviour have been practiced in several different engimgacenes in addition to WS-CDL (for
which this work is intended to serve as its theoretical upiiging). Representative examples in-
clude the standard notation for cryptographic protoc8lg,[message sequence charts (MSZg|[
and UML sequence diagram8d. These notations are intended to offer a useful aid at the de
sign/specification stage, and do not offer full-fledged progming language, lacking in e.g. standard
control structures and/or value passing.

18.2. Global Descriptions of Communication Behaviour (2).DiCons (which stands for “Dis-
tributed Consensus”), which is independently conceived predates WS-CDL, is a notation for
global description and programming of Internet applicagiintroduced and studied by Baeton and
others f], and would be the first fully expressive language for repnifig interactions based on
a global method. DiCons chooses to use programming priesittfose to user’s experience in the
web, such as web server invocation, email, and web form filiatper than general communication
primitives. Its semantics is given by either MSCs or dirgoem@tional semantics. DiCons does not
use session types or other channel-based typing. An areloigtine theory of endpoint projection
has not been developed in the context of DiCons.

18.3. Global Descriptions of Communication Behaviour (3).Petri-nets may also be viewed
as offering a global description, though again they are migedul as a specification/analytical tool.
As an example, a study by van der Aak$] presents an analysis of a business protocol showing how
a description of an inter-participant business protocal ba implemented inside each participant
without losing causal constraint, all represented in Rééts. While quite different in the formal
apparatus and motivations, it shares a technical interiéistonr analysis in Section 14 as a causality
analysis of interactions. The current lack of notions ofetyjin Petri nets may make it hard to carry
out the analogue of the full constructions as done in thegotgzaper (which heavily rely on types).

18.4. Type Disciplines for Concurrent Programming Languags. The present work shares
with many recent works its direction towards well-struetticommunication-centred programming
using types. Pict43] is the programming language based ontiealculus, with rich type disciplines
including linear and polymorphic types (which come from #tedies on types for the-calculus
discussed in the next paragraph). Polyphoni¢3l uses a type discipline for safe and sophisticated
object synchronisation. Compagnoni, Dezani, Gay, Vasasloscand others have studied interplay
of session type disciplines with different programming stoncts and program propertie$?, 18,

19, 24, 48,50 The EPP theory offers a passage through which these st(@lidbased on endpoint
languages and calculi) can be reflected onto global degmigtas we have demonstrated for session
types in the present work. In the context of session types ptesent work extends the session
structure with multiple session names which is useful foritg parallel communications inside a
session.

18.5. Theories of Types for ther-Calculus. Many theories of types for tha-calculus are
studied. In addition to the study of session types menti@iEe, these include input/output types
[34,43, linear types 23, 30, various kinds of behavioural types which among othertiite causal-
ity [3,6,7,25,27,46,47, 3and combination of behavioural types and model checkingdwanced
behavioural analysisl[7, 44, to name a few. Among others, behavioural types offer araaded
analyses for such phenomena as deadlock freedom. We aemttyrstudying how these advanced
type-based validation techniques on the basis of the preBeple session type discipline will lead to
effective validation techniques. Again these theoriesld/become applicable to global descriptions
through the link established by the EPP theory.

114

18.6. Process Calculus-based Analysis of Web Servic&ordon, Fournet, Bhargavan and
Corin studied security-related aspects of web servicebeir series of works (whose origin lies in
the the spi-calculus?] and the appliedt-calculus [L]). In their recent work 10], the authors have
implemented part of WS-Security libraries using a dialdcMa, and have shown how annotated
application-level usage of these security libraries in webvices can be analysed with respect to
their security properties by translation into tieecalculus L1]. The benefits of such a tool can be
reflected onto the global descriptions through the theorfgR®P, by applying the tool to projections.

Laneve and Padovar8]] give a model of orchestrations of web services using amsioas of
Te-calculus to join patterns. They propose a typing systengi@ranteeing a notion of smoothness
i.e. a constraint on input join patterns such that their sctsj (channels) are co-located in order to
avoid a classical global consensus problem during comratioit. Reflecting the centralised nature
of orchestration (cf. footnote 1), neither a global calsutor endpoint projection is considered.

A bisimulation-based correspondence between choreogramtorchestration in the context of
web services has been studied 1d][by Busi and others, where a notion of state variables is used
the semantics of the orchestration model. They operatirelhte choreographies to orchestration.
Neither strong type systems nor disciplines for end-poinjgetion are studied in their work.

To provide a formal foundation of WS-CDL based on processulahas been studied since
the inception of WS-CDL. For example, Kavantzas suggestedise of fusion calculi39, 54 for
such a foundation (fusion calculi are formally equivalemthe r-calculus and other representative
name passing process calculi). While we could have used ame rpassing calculi with enough
expressive power, including threcalculus and fusion calculi, as formalisms for endpoimtogssses,
our choice of an imperative refinement of thecalculus in the p resent paper has the merit in that
we can have a direct, transparent correspondence betweedbented global formalism and the
endpoint formalism. A semantic preserving encoding of épiplied version of thercalculi into the
pureTe-calculus (or other pure name passing calculi, includirgid calculi) is an interesting topic
for future study.

115

Bibliography

[1] M. Abadiand C. Fournet. Mobile values, new names, andrgecommunication. IROPL '01: Proceedings
of the 28th ACM SIGPLAN-SIGACT symposium on Principlesaframming languagepages 104-115,
New York, NY, USA, 2001. ACM Press.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographicapocols: The spi calculudnformation and
Computation 148(1):1-70, Jan. 1999.

[3] R. Amadio, G. Boudol, and C. Lhoussaine. The receptigrihuted pi-calculus. IfProc. of the FST-TCS
'99, volume 1738 oLNCS Springer-Verlag, 1999.

[4] J. Baeten, H. van Beek, and S. Mauw. Specifying intermgtlieations with DiCons. Ir'SAC '0], pages
576-584, 2001.

[5] N. Benton, L. Cardelli, and C. Fournet. Modern concuggmbstractions for CHACM Trans. Program.
Lang. Syst.26(5):769-804, 2004.

[6] M. Berger, K. Honda, and N. Yoshida. Sequentiality aneltifcalculus. InProc. TLCA'01 2001.

[7] M. Berger, K. Honda, and N. Yoshida. Genericity and thegiculus. InProc. FOSSACS’'Q2003.

[8] J. A. Bergstra and J. W. Klop. Algebra of communicatinggessesTheoretical Computer Scienc&7:77—
121, 1985.

[9] G. Berry and G. Boudol. The Chemical Abstract Machif€S 96:217-248, 1992.

[10] K. Bhargavan, C. Fournet, and A. Gordon. Verified reffiers implementations of WS-Security protocols.
To appear in WS-FM '062006.

[11] B. Blanchet. An efficient cryptographic protocol vegifibased on Prolog rules. RSFW pages 82-96,
2001.

[12] E. Bonelli, A. B. Compagnoni, and E. L. Gunter. Corresgence assertions for process synchronization in
concurrent communicationgournal of Functional Programmindl5(2):219-247, 2005.

[13] G. Brown. A post at pi4soa forum. October, 2005.

[14] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. ZavatiaChoreography and orchestration conformance
for system design. ICOORDINATION volume 4038 of-NCS pages 63-81, 2006.

[15] M. Carbone, M. Nielsen, and V. Sassone. A calculus festtmanagement. IRroc. of the FST-TCS 'Q4
volume 3328 oLNCS pages 161-173. Springer-Verlag, 2004.

[16] F. Cardone and M. Coppo. Type inference with recursiyges: Syntax and semanticf. Comput,
92(1):48-80, 1991.

[17] S. Chaki, S. K. Rajamani, and J. Rehof. Types as modetslefirchecking message-passing programs. In
POPL, pages 45-57, 2002.

[18] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, andC8ossopoulou. Session Types for Object-Oriented
Languages. IfProceedings of ECOOP’Q&NCS, 2006.

[19] S. Gay and M. Hole. Subtyping for session types in theghtwdus. Acta Informatica 42(2-3):191-225,
NOV 2005.

[20] C. A. Gunter.Semantics of Programming LanguagkHT Press, 1995.

[21] M. Hennessy and J. Riely. Resource access control iresygsof mobile agents. IRroceedings of HLCL
'98, volume 16.3 oENTCS pages 3-17. Elsevier Science Publishers, 1998.

[22] C. HoareCommunicating Sequential Processeeentice Holl, New York, 1985.

[23] K. Honda. Composing processes Hroceedings of POPL'96pages 344-357, 1996.

[24] K. Honda, V. T. Vasconcelos, and M. Kubo. Language pims$ and type discipline for structured
communication-based programming.BESOP '98 pages 122-138. Springer, 1998.

[25] K. Honda, N. Yoshida, and M. Berger. Control in tfeealculus. InProc. Fourth ACM-SIGPLAN Continu-
ation Workshop (CW’'04R004.

[26] G. Huet.Rsolution d’ quations dans les langages d'ordr@, ... ,w. Thse d’ tat, Universit Paris 7, Paris,
France, 1976.

[27] A. Igarashi and N. Kobayashi. A generic type system fierpi-calculus. IlPOPL, pages 128-141, 2001.

117

[28] International Telecommunication Union. RecommeimaZ.120: Message sequence chart, 1996.

[29] N. Kavantzas. A post at petri-pi mailing list. Augus@05.

[30] N. Kobayashi, B. Pierce, and D. Turner. Linear types arghlculus. InProceedings of POPL'9ages
358-371, 1996.

[31] C. Laneve and L. Padovani. Smooth orchestratorsoBSaCsS '06LNCS, pages 32—46, 2006.

[32] R. Milner. A Calculus of Communicating Systenv®lume 92 ofLecture Notes in Computer Science
Springer, Berlin, 1980.

[33] R. Milner. Functions as process&4SCS 2(2):119-141, 1992.

[34] R. Milner. The polyadicrecalculus: A tutorial. InLogic and Algebra of SpecificatiorSpringer-Verlag,
Heidelberg, 1993.

[35] R. Milner, J. Parrow, and D. Walker. A calculus of mohil®cesses, | and linformation and Computatign
100(1):1-40,41-77, Sept. 1992.

[36] R. Milner, M. Tofte, and R. W. Harpel'he Definition of Standard MIMIT Press, 1990.

[37] R. M. Needham and M. D. Schroeder. Using encryption fghentication in large networks of computers.
Commun. ACM21(12):993-999, 1978.

[38] OMG. Unified modelling language, version 2.0, 2004.

[39] J. Parrow and B. Victor. The fusion calculus: Expresai®ss and symmetry in mobile processe&|G5'98
1998.

[40] PI4SOA. http://www.pi4soa.org.

[41] B. C. PierceTypes and Programming Languag®8iT Press, 2002.

[42] B. C. Pierce and D. Sangiorgi. Typing and subtyping fashite processesMathematical Structures in
Computer Sciencé(5):409—-453, Oct. 1996.

[43] B. C. Pierce and D. N. Turner. Pict: A programming langeidased on the pi-calculus. froof, Language
and Interaction: Essays in Honour of Robin Miln®IT Press, 2000.

[44] S. K. Rajamani and J. Rehof. Conformance checking fatetsof asynchronous message passing software.
In CAV, pages 166-179, 2002.

[45] S. Ross-Talbot and T. Fletcher. Ws-cdl primer. Unpshid draft, May 2006.

[46] D. Sangiorgi. The name discipline of uniform receptiess. INNCALP '97, volume 1256 oLLNCS pages
303-313, 1997.

[47] D. Sangiorgi. Modal theory. IFCALP, 2005.

[48] K. Takeuchi, K. Honda, and M. Kubo. An interaction-bédanguage and its typing system.PARLE’94
volume 817 ofLNCS pages 398-413, 1994.

[49] W. van der Aalst. Inheritance of interorganizationabrikflows: How to agree to disagree without loosing
control?Information Technology and Management Jourrz4B):195-231, 2002.

[50] V. T. Vasconcelos, A. Ravara, and S. J. Gay. Sessiorstigrfunctional multithreading. ICONCUR '04
LNCS, pages 497-511, 2004.

[51] W3C. Choreography description language, w3-cdl, wedvises choreography working group.
http://www.w3.0rg/2002/ws/chor/.

[52] W3C WS-CDL Working Group. Web services choreographysaigtion language version 1.0.
http://iwww.w3.0rg/TR/2004/WD-ws-cdl-10-20040427/.

[53] G. Winskel.The formal semantics of programming languagdsT Press, 1993.

[54] L. Wischik and P. Gardner. Explicit fusionSheor. Comput. Sgi340(3):606—-630, 2005.

[55] N. Yoshida, M. Berger, and K. Honda. Strong Normaligatin thet-Calculus. InProc. LICS'01 pages
311-322. IEEE, 2001. The full version to appeaddaurnal of Inf. & Comp.

118

Appendix

APPENDIX A

Subject Reduction for the global calculus type system

This appendix establishes the subject reduction of thentypiystem for the global calculus,
Theorem 1. Moreover, we will go through some intermediaseiits. We first note:

Lemma 1.

(1) (substitution, 1) ", X :A F | > A" andl" = I’ > Athenl” = 1[I'/X] > 4.
(2) (substitution, 2) If" - o, I - o(X@A) : 8 andl v: 6, thenl - G[x@A — V].
Proof.

(1) The proof is direct from the typing rules.
(2) Itis immediate from the typing rules.

We prove main theorem for this section.

Theorem 1.

(1) (Subject Congruence) IF - |1 > Aandl =1’ thenll - I'> =4 A.
(2) (Subject Reduction, 1) Assunie- . Thenl I~ | > Aand(a,l) — (¢’,1") imply T - ¢’
andl - | > A’ for somed'.
(3) (Subject Reduction, 2) Assuniig- 0. Thenl 1 and(o,1) — (d’,1’) imply I - ¢’ and
rel.
Proof.

(1) We shall prove this by induction on the structural comgree rules.
e The proof is trivial for all cases that defifn@and+ to be commutative monoids.
e When(vs) | |I"=(vs) (I |I") whenevers¢ fn(l’), suppose thdt - (vs) | | I'>A.
Now, by rule (TRAR), we have that\ = Aj e A such that™ - (vs) | > Ag andl F
I’ > Ay. According to which rule we can apply for gettifig- (vs) | > Az, we have
three cases: (TBs-1), (TRES-2) and (TRes-3). We only analyse the first one as
the other two are very similar. If we apply (THR-1) then we have that there exists
al' suchthaty; = A, §%: L andlN 1> A §s5[A,B]: a. Now, applying again
rule (TPAR), we have thaf -1 |I'> A", §s5[AB]:a e A, if we can prove that
N §S5[A,B]: 0 e Ayis defined. Butad', § 5 : L e/ is defined then linearity is
also respected when addisbecause of the assumptiegt fn(1’) and scs & fn(Ap).
The proof concludes by applying the rule (ER 1) again.
(2) In order to prove this, we shall prove a stronger resaltfi.- | > A and(a,l) — (d’,1’)
imply I = 1 > A’ and one of the following statements is true:
o A=A
o A=A3,§AB]:aandd’ =Ag,8A,B]:d fora —a’.
With a — o’ we refer to a reduction on types, eg] op(6).a — a. Note that we also
havefsc(A) C fsc(4'). The proof proceeds by induction on the depth of the dedvatif
(o,1)— (d,1").
Basic cases.

121

(Comm). By hypothesis, we have,A—B:s(op, € x).1) — (o’,1)andl' - A—B:
s(op, €, X).1 >A. Now, the only applicable rules are (B®M) and (TGOMMINV).
The cases are similar, so we shall inspect only the first one. tht¥n have that
A=Ay -5[AB]:Xjc3sT0pj(8)).ajandll -1>A;-§[AB]: aj.

e (INIT). We have(o,A— B:ch(v§).l1) — (g, (v9) ;). By applying the rule (ThIT),
we have thaf’, ch@B: (§)a - A— B:ch(§).I>AforT =T’ ch@B: (§)a and
I, ch@B: (§a 1 >A-5[B,A : a. Now, by applying rule (TRs-1) repeatedly,
we havel’, ch@B: (§)a - (v8) I >A-€:L and by rule (TRs-3), we can get
I, ch@B: (8)a - (v§) | >A.

e (REC). We have(a,rec X.1) — (o,l[rec X.1/X]) andl" Frec X.I > A. The only
applicable rule is (TRc), which impliesl" - X : AF | : A. But, by Lemma 1, we have
thatl" - I[rec X.1/X] > A.

e (IFTT). From this semantics rule it follows théd, if e@A then |1 else I2) — (0, 11)
and from the hypothesIst if e@A then |1 else 20> A. Applying rule (TIF) we have
M=l A

e (IFFF). Similar to previous case.

e (Sum). Similar to previous case.

e (AssIGN). We have thato,x@A :=e.l) — (d’,1) andl - x@A :=e.] > A. Now,
applying the rule (TASIGN) we getl” - | > A.

Inductive cases.

e (PaR). By thisrule, as we assunte, 11 | 12) — (d',1] | 12), we get(c,11) — (d’,17).
Moreover, there exisf\; and Ay such thath = Aj e Ay andT 1y | I> > A, and
such that, applying rule (TAR), I 11> A1 andTl F I > Az. Now, by induction
hypothesis, it follows that there exist§ such thaf” 17 > Aj. If A; = A] then the
proof is trivial. Instead, if\; = A", §A,B] : a andA; = A", §[A B] : o’ with a — o
then it is possible to prove that preserves linearity i.ea’ respects linearity when
merged with the type af,.

e (STRuUCT). It follows from first point of this theorem.

e (RES). In this case we have

(o,1) — (d,1")
(0.w§ 1) — (. (v§ 1)
There are three possible cases for typing restriction, leutrly analyze rule (TRs-

1) as the other cases are similar. By applying this rule wet mel™ - (vs) | >A =
A1, §%: L ifand only if
ME1>Ar §55[A B a
Now, as(a,1) — (d’,1"), by induction hypothesis, we have tiiat |’ > A" and three
possible cases:
(@) A" = 11,5 55[AB]: . If we now apply again rule (TBs-1), we get that
M- (VS) |/I>A1§1§2 L.
(b) Ay =A,,8[C,D]: 0’ andA” =A,,§[C,D] : 0”5 55[A,B] : a. Now, applying
again rule (TRes-1), we get thaf - (vs) I’'>A,,8[C,D]: 0”58 : L.
(c) A" = A1,555[A,B] : a and we trivially get™ - (vs) I'>A155 : L.
(3) Easy to prove from the previous point.

122

APPENDIX B

Subject Reduction for the end-point calculus type system

In here, we give the proofs for the end-point calculus tygeigiine. Mainly we give proofs for
Theorem 2.

Proposition 8.

(1) (well-formedness) - M > A impliesl” andA are well-formed.
(2) (weakening, 1) Assumi T is well-formed. Ther™ - M > Aimpliesl-I" = M > A.
(3) (weakening, 2) Len be well-formed ands are fresh. Theim = M > A impliesT +
Mp>AS: L.

(4) (thinning) Assuméc(r')Nfn(M)=0. Thenl-I'" - M > AimpliesT = M > A.
(5) (subsumption, 1) IF,ch@A: (§a - M > A anda =< B thenl,ch@A: (5B - M > A
(6) (subsumption, 2) IF F M > A-§@A: a anda < Bthenl F M > A-§@A: B.

Proof.

(1) By induction on the typing rules. The proof is similar keetglobal case.

(2) This proof proceeds by induction on the typing rules. defthis we need to prove that
the result holds also for processes fiel-p P > AimpliesT-I'" o P > A. Also in this
case, the proof proceeds by induction on the typing rulesissttaighforward. We are
now able to prove the result for any network.

e (TPARTICIPANT). In this rule we have thdt - A[P] ;> Aifand only if -4 P> A.
By what we proved above, we have tHatl’ 5 P > A and then, again by rule
(TPARTICIPANT) we havel -T’ - A[P]; > A.

e (TPAR-NW). We have that’ - N; | N2> Ay ©® Ay if and only if I - Ng > A and
I - Np > Ap. By induction hypothesis we g&t- T’ - Ny > A andl -7 Np > A
and by rule (TRR-NW) again we gef -’ = Np | No > A1 © A

e (TRES-NW,1), (TRES-NW,2), (WEAK-end-NW) and (WEAK-_L-NW). Similar to
previous case.

(3) The proof proceeds by induction on the typing rule. Ashia previous proof, we need to
prove something similar for the processes

(4) By induction on the typing rules.

(5) By induction on the typing rules, the results is a diremtgequence of the rules typing
communication.

(6) By induction on the typing rules. Similar to previous eas

We then give the proof of Proposition 9.

Proposition 9. (existence of minimal typing) Ldig be theminimal service typing of MThen, if

I - M > Athenwe havé&g - M > Ag such that’ - M > A’ and/ using the same vectors of free
session channels dsimplies g < " andAg < A’. Proof. (outline) By typing, we knowM has all
session channels abstracted by initialisation actionst®reason we already know the grouping of
bound session channelshh determining uniquely vectors used in the introductioemd-types (for

L types an arbitrary grouping of session channels is enoghjting from them, we can inductively
construct minimum typings following the syntaxidf. The second clause is its simple generalisation

123

(note grouping of free session channels should be givendiediad to construct a typing). O
And then proof of Lemma 2.

Lemma 2.
(1) ¥ EA[P];> A, TEX@A:6andl -v: 6, thenl” = A[P]g, > A.
(2) T, X:AkFa P> A andl Fa Q> A, thenl F P[Q/X] > A.
Proof.
(1) Trivial, from typing rules.
(2) This proof is similar to the global case i.e. by inductmmthe typing rules.

O
Below the proof for Lemma 3
Lemma 3. (subject congruence) - M > AandM = N thenl" - N > A.
Proof. By rule induction of the generation rules af O
Finally the main theorem for this section.
Theorem 2.1f T - N> A andN — N’ thenl - N/ > A,
Proof. Standard, using Lemma 2. O

124

APPENDIX C

Alternative Inference Algorithm for Well-threadedness

In the following we show there is a simple algorithm which dégaductively infer a consistent
annotation of an interaction, if any: and informs a failufeloing so if it is not. We use the following
notations.

(1) ¢indicates a sequentef thread assignmentsvhere a session assignment is of the form
(1,A,8) (which intuitively indicates communications done via arfiysdy A should be in
the thread).

(2) We write?-¢' etc. for the concatenation of two strings, afidA, §) € ¢ when (1,A,$)
occurs ind.

DEFINITION 29 (Annotating Function). Thannotating functiony(l, ¢) is a partial function
which maps a pair of (1) a thread assignment and (2) a wedletyptrongly-connected interaction
which has at most one initiating participant to the corresfiog annotated interaction, defined in-
ductively as follows. In the first line we choose a frashby incrementing the maximum thread in
L.

YA—B:chwd).I, e-(t,AD) L AT BR:chvE).y(l, £-(11,A 9 (12,B,9)
(t, fresh)
Y(A—B:s(op, € X), £-(11,AD)) def A —B™ :s(op, € X).Y(I, £-(11,AT)-(12,B,1572))
({t2,B,F15f2) € £, and T # 1)
Yx@A=el, (-(LAD) L x@A=e.y(, (TAD)
Vi llz @ADL (v, AD) Fyla, ¢(LAD))
y(if é@Athen Iy else Ip, 0-(T,AD) L' if e@AT then y(11, £-(T,AD)) else (I, ¢-(T,AD))
Yii+lz CAD) E v e@AD) +y(a, ¢(LAD)
YA erAl) £ xp
yrec XA, L AD) B rec ™Ay, ¢-(1,AD)

Otherwise the functio®¥ is not defined. We further set, forwhich is well-typed and strongly con-
nected, which has a unique initiating participant, and Wwhdoes not contain hiding or free session

channels:
def

W) = v, (ttop(l),€))

Remark. Above in the communication case, the last conditipg: 1> guarantees the choice of is
unique.

1A thread assignment contains redundancy, containingiiimiccurrences of a thread assignment, for the
readability of the clauses for annotating functions.

125

