A Process Calculus |

A Process Calculus |

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

A Process Calculus |

A Process Calculus

e Description of process networks
— Static communication topologies.
e History sketch

— Robin Milner, 1980.
— CCS: Calculus of Communicating Systems.
— Various revisions and elaborations.

— Extended to mobile processes (n-calculus).
e Algebraic approach

— Concurrent system modeled by term.
— Theory of term manipulations.

— External behavior preserved.
e Observational equivalence

— External communications follow same pattern.

— Internal behavior may differ.

Modeling of communication and concurrency.

Wolfgang Schreiner

A Process Calculus |

A Simple Example

I N {}out

o Agent

— Dynamic system is network of agents.

— Each agent has own identity persisting over time.

— Agent performs actions (external communications or in-

ternal actions).

— Behavior of a system is its (observable) capability of com-

munication.

e Agent has labeled ports.

— Input port in.

— QOutput port out.
e Behavior of ('

— C := in(z).C'(x)

— C'(z) := out(z).C

Wolfgang Schreiner

A Process Calculus |

Behavior Descriptions

e Agent names can take parameters.
e Prefix in(x)

— Handshake in which value is received at port in and be-
comes the value of variable .

o Agent expression in(z).C’(x)
— Perform handshake and proceed according to definition of
C'.
e Agent expression out(z).C

— Output the value of x at port out and proceed according
to the definition of C,

e Scope of local variables:
— Input prefix introduces variable whose scope is the agent
expression (',

— Formal parameter of defining equation introduces variable
whose scope is the equation.

Wolfgang Schreiner 3

A Process Calculus |

Behavior Descriptions

C' := in(x).out(z).C
A = in(x).in(y).out(x).out(y).A

e How do behaviors differ?

— A inputs two values and outputs two values.

— (' inputs and output a single value.

in(} {}ﬁ

e Agent expression C'—~C'.

— Combinator Aj~A (defined later).
— Agent formed by linking out of A, to in of A;.

— ~~ Is associative.

Wolfgang Schreiner

A Process Calculus |

Bounded Buffer

I N out

o (1)
~C = C~C~...~C
— Behaves as bounded buffer of capacity n.
— O™ = Buff,
e Specification Buff,(s)
— Buff,, () := in(z).Buff, (x)
— Buff, (vi,...,v,) =
out(w,).Buff, (vi,...,vn_1)
— Buff,, (v1,...,u) =
in(z).Buff, (z,v1, ..., v)
+ out(vy).Buff, (vy,...,v_1)(0 < k < n)

o C") = Buff,, ()

Wolfgang Schreiner

A Process Calculus |

Summation

e Basic combinator '+’
— P + () behaves like P or like ().

— When one performs its first action, other is discarded.

— |f both alternatives are allowed, selection is non-
deterministic.

e Combining forms

— Summation P + () of two agents.

— Sequencing «. P of action « and agent P.
e Different levels of abstractions

— Agent can be expressed directly in terms of its interaction
with environment (C, Buff,).

— Agent can be expressed indirectly in terms of its composi-
tion of sammer agents (C(")).

Wolfgang Schreiner 6

A Process Calculus |

Example
i N out
ackin ackout

e Received values to be acknowledged.
— D := in(xz).out(z).ackout.ackin.D

— D acknowledges input after it has delivered value as output
and received acknowledgement.

— Synchronization actions ackout, ackin.
e Combination of n copies of D:
— D" := D~D~...~D

— D behaves like single copy of D!
— D~D = D!
e Alternative definition:
— D' := in(z).ackin.out(z).ackout.D’
— D'™ = Buff', ().
— Slightly modified specification Buff',,.

Wolfgang Schreiner 7

A Process Calculus |

Examples

big little
O O

2p||1p

collect

e A vending machine:

— Big chocolade costs 2p, small one costs 1p.

—V = 2p.big.collect.V
+ 1p.little.collect.V

I N out

e A multiplier
— Twice := in(z).out(2 * x). Twice.

— Output actions may take expressions.

Wolfgang Schreiner

A Process Calculus |

A Larger Example: The Jobshop

e A simple production line:
— Two people (the jobbers).
— Two tools (hammer and mallet).
— Jobs arrive sequentially on a belt.

— A job is to drive a peg into a block.

Wolfgang Schreiner 9

A Process Calculus |

Flow Graphs

e Ports may be linked to more than one other
port.

— Jobbers compete for use of hammer.
— Jobbers compete for use of job.

— Source of non-determinism.

e Ports of belt are omitted from system.
— in and out are external.

e Internal ports are not labelled:
— Ports by which jobbers acquire and release tools.

e Flow graph is exact mathematical object:

— Homomorphism from flow graph algebra to behavior alge-

bra.

Wolfgang Schreiner 10

A Process Calculus |

The Tools

e Behaviors:

geth getm

put h put m

— Hammer := geth.Busyhammer

Busyhammer := puth.Hammer
— Mallet := geth.Busymallet
Busymallet := puth.Mallet
e Sort = set of labels

— P : L ...agent P hassort L

— Hammer: {geth, puth}
Mallet: {getm, putm}
Jobshop: {in, out}

Wolfgang Schreiner

11

A Process Calculus |

The Jobbers

e Different kinds of jobs:

— Easy jobs done with hands.
— Hard jobs done with hammer.
— Other jobs done with hammer or mallet.
e Behavior:
— Jobber := in(job).Start(job)
— Start(job) := if easy(job) then Finish(job)

else if hard(job) then Uhammer(job)
else Usetool(job)

— Usetool(job) := Uhammer(job)+ Umallet(job)
— Uhammer(job) := geth.puth.Finish(job)

— Umallet(job) := getm.putm.Finish(job)

— Finish(job) := out(done(job)).Jobber

Wolfgang Schreiner

12

A Process Calculus |

Composition of Agents

e Jobber-Hammer subsystem

— Jobber | Hammer

— Composition operator |

— Agents may procced independently or interact through

complementary ports.

— Join complementary ports.

e Two jobbers sharing hammer:

— Jobber | Hammer | Jobber

— Composition is commutative and associative.

Wolfgang Schreiner

13

A Process Calculus |

Further Compositon

e Internalisation of ports:

— No further agents may be connected to ports:
— Restriction operator \

— \L internalizes all ports L.

— (Jobber | Jobber | Hammer)\{geth,puth}

e Complete system:

— Jobshop := (Jobber | Jobber | Hammer | Mallet)\ L
— L := {geth,puth,getm,putm}

Wolfgang Schreiner

14

A Process Calculus |

Reformulations

e Alternative formulation:

— ((Jobber | Jobber | Hammer)\{geth, puth}
| Mallet)\{getm, putm}

— Algebra of combinators with certain laws of equivalence.

e Relabelling Operator

— P[ly/h,... 0L /1]
get
put

- ()= 1)
e Semaphore agent
— Sem := get.put.Sem
e Reformulation of tools

— Hammer := Sem[geth/get, puth/put]
— Mallet := Sem|[getm/get, putm/put]

Wolfgang Schreiner

15

A Process Calculus |

Equality of Agents

e Five basic operators:

— Prefix: a.P

— Summation: P + ()

— Composition: P | @

— Restriction: P\{ly,...,1,}

— Relabelling: P[l}/11,...,Il /1,]

e Strongjobber only needs hands:

— Strongjobber =
in(job).out(done(job)).Strongjobber

e Claim:

— Jobshop = Strongjobber | Strongjobber
— Specification of system Jobshop
— Proof of equality required.

Wolfgang Schreiner

16

A Process Calculus |

Action and Transition

e Names and co-names

— Set A of names (geth, ackin, ...)

— Set A of co-names (geth, ackin, ...)
—Set of labels L =AU A

e Transition P L) Q)

th
— Hammer 555 Busyhammer

uth
— Busyhammer P Hammer

e Agents A and B

anpc cqB

—A:=aA A :=¢cA
-~ B:=¢.B' B =08

Wolfgang Schreiner

17

A Process Calculus |

Composite Agents

e Composite Agent A|B

~ A% A allows A|B & v A|B

— A5 Aallows A'|B S A|B
— A5 Aand BS B allows A'|B 5 A|B'

e Completed (perfect) action 7.

— Simultaneous action of both agents.
— Internal to composed agent.
— Act = L U {7}
e Internal versus external actions

— Internal actions are ignored.

— Only external actions are visible.

— Two systems are equivalent if they exhibit same pattern

of external actions.

-PLp L. Lop, equivalenttoPI>Pn

Wolfgang Schreiner

18

A Process Calculus |

Restrictions

e Restriction (A|B)\c

— P X% Pallows P\L % P\L
(if &, @ not in L)

e Transition (derivation) tree

(A|B)\c
la
(A" B)\c
7
(A|B")\c
/b N
(A|B)\c (A"|B")\c
la 1b
(A'|B)\¢ (A'|B)\¢

Wolfgang Schreiner 19

A Process Calculus |

Transition Graph

e [ransition graph

_ (AIB)\c ~
E/ V\
——= (AIB)\c (A'lB)\c

SN b

(A'B)\c

— (A|B)\¢ = a.7.C
—C :=ab7.C +barC

e Composite system

— Behavior defined without use of composition combinator |

or restriction combinator!
e Internal communication
—a.7.P=a.P
— (A|B)\¢ = a.D
— D :=ab.D+ baD

Wolfgang Schreiner

20

A Process Calculus |

The Basic Language

e Agent express

— Agent constants
— Prefix a.

— Summation Y F,
— Composition E |
— Restriction E\L
— Relabelling E|[f]

e No value transmission between agents

Ions

and variables

By

— Just synchronization.

Wolfgang Schreiner

21

A Process Calculus |

The Transition Rules

o Act a.FE & E

E%E
e Sum; /
> F; % E;
e Com ESE
' EF S EF
e Com PSP
> E|F S E|F
[l
o Com; E%E’TF%F’
E|F — E'|F'
/
® Res E\i i g’\L (e, @ not in L)
o ESFE
o Re fla
el '8 gy
P& p
(] Con m (A = P)

Wolfgang Schreiner

22

A Process Calculus |

Derivatives and Derivation Trees

e Immediate derivative of E
— Pair (o, F')
~-ES E
— E'is a-derivative of E

e Derivative of E
— Pair (..., ')
~-EY . B E
— E'lis (... ,-)derivative of E

e Derivation tree of E

St

Wolfgang Schreiner

23

A Process Calculus |

Examples of Derivation Trees

e Partial derivation tree

(E|F)\a
AT
((a.F + 0.0)| @.F)\a
b
(0] @.F)\a
ea. X +0b0Y
X
a
a.X +bY
b
Y

e Behavioural equivalence

— Two agent expressions are behaviourally equivalent if they

yield the same total derivation trees

Wolfgang Schreiner

24

A Process Calculus |

The Value-Passing Calculus

e Values passed between agents

— Can be reduced to basic calculus.
— C := in(z).C'(x)
C'(z) := out(z).C
— C =%, in,.C"
C! :=out,.C (veV)
— Families of ports and agents.

e The full language

— Prefixes a(z).F, a(e).E, 7.E
— Conditional if b then E
e [ranslation
—a(x).F = 2, E{v/z}
—a(e).E = a..F
—-7.EF=71.F
—if b then E = (F, if b and 0, otherwise)

Wolfgang Schreiner

25

