A Process Calculus I

A Process Calculus I

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

A Process Calculus

Description of process networks

- Static communication topologies.

History sketch

- Robin Milner, 1980.
- CCS: Calculus of Communicating Systems.
- Various revisions and elaborations.
- Extended to *mobile* processes (π -calculus).

Algebraic approach

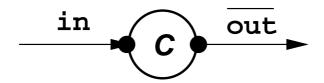
- Concurrent system modeled by term.
- Theory of term manipulations.
- External behavior preserved.

• Observational equivalence

- External communications follow same pattern.
- Internal behavior may differ.

Modeling of communication and concurrency.

A Simple Example



• Agent C

- Dynamic system is network of agents.
- Each agent has own identity persisting over time.
- Agent performs actions (external communications or internal actions).
- Behavior of a system is its (observable) capability of communication.

Agent has labeled ports.

- Input port in.
- Output port $\overline{\mathtt{out}}.$

• Behavior of C:

- -C := in(x).C'(x)
- $-C'(x) := \overline{\mathtt{out}}(x).C$

Behavior Descriptions

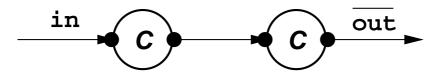
- Agent names can take parameters.
- Prefix in(x)
 - Handshake in which value is received at port in and becomes the value of variable x.
- Agent expression in(x).C'(x)
 - Perform handshake and proceed according to definition of C'.
- Agent expression $\overline{\mathtt{out}}(x).C$
 - Output the value of x at port $\overline{\mathtt{out}}$ and proceed according to the definition of C.
- Scope of local variables:
 - Input prefix introduces variable whose scope is the agent expression C.
 - Formal parameter of defining equation introduces variable whose scope is the equation.

Behavior Descriptions

$$C := in(x).\overline{out}(x).C$$

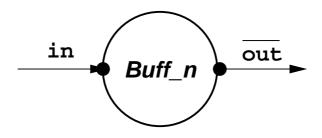
 $A := in(x).in(y).\overline{out}(x).\overline{out}(y).A$

- How do behaviors differ?
 - -A inputs two values and outputs two values.
 - -C inputs and output a single value.



- ullet Agent expression $C \frown C$.
 - Combinator $A_1 \frown A_2$ (defined later).
 - Agent formed by linking $\overline{\mathtt{out}}$ of A_2 to in of A_1 .
 - \sim is associative.

Bounded Buffer



- $\bullet C^{(n)}$
 - $-C^{(n)} := C \cap C \cap \dots \cap C$
 - Behaves as bounded buffer of capacity n.
 - $-C^{(n)} = Buff_n$
- Specification $Buff_n(s)$
 - $-Buff_n \langle \rangle := in(x).Buff_n \langle x \rangle$
 - $\operatorname{Buff}_n \langle v_1, \dots, v_n \rangle := \\ \overline{\operatorname{out}}(v_n). \operatorname{Buff}_n \langle v_1, \dots, v_{n-1} \rangle$
 - $\begin{array}{l} \textit{Buff}_n \ \langle v_1, \ldots, v_k \rangle := \\ \overline{\text{in}}(x). \textit{Buff}_n \ \langle x, v_1, \ldots, v_k \rangle \\ + \overline{\text{out}}(v_k). \textit{Buff}_n \ \langle v_1, \ldots, v_{k-1} \rangle (0 < k < n) \end{array}$
- \bullet $C^{(n)} = Buff_n \langle \rangle$

A Process Calculus I

Summation

• Basic combinator '+'

- -P+Q behaves like P or like Q.
- When one performs its first action, other is discarded.
- If both alternatives are allowed, selection is nondeterministic.

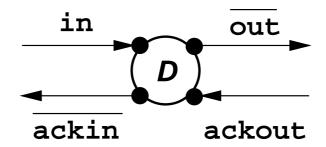
Combining forms

- Summation P+Q of two agents.
- Sequencing $\alpha.P$ of action α and agent P.

Different levels of abstractions

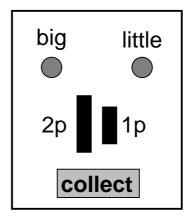
- Agent can be expressed directly in terms of its interaction with environment $(C, Buff_n)$.
- Agent can be expressed indirectly in terms of its composition of sammer agents $(C^{(n)})$.

Example



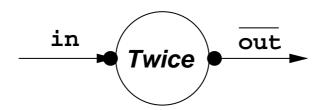
- Received values to be acknowledged.
 - $-D := in(x).\overline{out}(x).ackout.\overline{ackin}.D$
 - $-\,D$ acknowledges input after it has delivered value as output and received acknowledgement.
 - Synchronization actions ackout, $\overline{\text{ackin}}$.
- ullet Combination of n copies of D:
 - $-D^{(n)} := D \frown D \frown \dots \frown D$
 - $-D^{(n)}$ behaves like \emph{single} copy of D!
 - $-D \frown D = D!$
- Alternative definition:
 - $-D' := in(x).\overline{ackin}.\overline{out}(x).ackout.D'$
 - $-D'^{(n)} = Buff'_n \langle \rangle.$
 - Slightly modified specification $Buff'_n$.

Examples



• A vending machine:

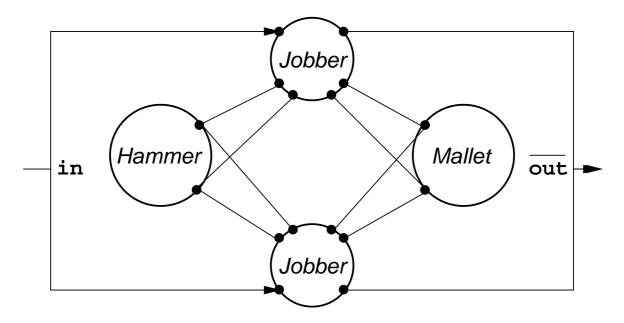
- Big chocolade costs 2p, small one costs 1p.
- $-\,V := {\tt 2p.big.collect.}V \ + {\tt 1p.little.collect.}V$



A multiplier

- $Twice := in(x).\overline{out}(2 * x).Twice.$
- Output actions may take expressions.

A Larger Example: The Jobshop



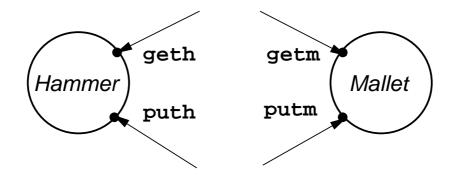
• A simple production line:

- Two people (the *jobbers*).
- Two tools (hammer and mallet).
- Jobs arrive sequentially on a belt.
- A job is to drive a peg into a block.

Flow Graphs

- Ports may be linked to more than one other port.
 - Jobbers compete for use of hammer.
 - Jobbers compete for use of job.
 - Source of non-determinism.
- Ports of belt are omitted from system.
 - in and $\overline{\text{out}}$ are external.
- Internal ports are not labelled:
 - Ports by which jobbers acquire and release tools.
- Flow graph is exact mathematical object:
 - Homomorphism from flow graph algebra to behavior algebra.

The Tools



• Behaviors:

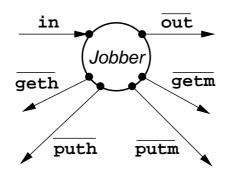
- Hammer := geth.Busyhammer Busyhammer := puth.Hammer
- Mallet := geth.Busymallet Busymallet := puth.Mallet

• *Sort* = set of labels

- $-\,P:L\,\dots$ agent P has sort L
- Hammer: {geth, puth}
 Mallet: {getm, putm}

Jobshop: {in, out}

The Jobbers



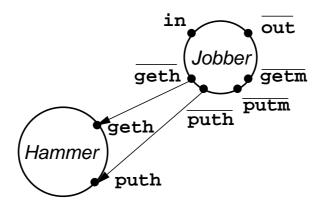
• Different kinds of jobs:

- Easy jobs done with hands.
- Hard jobs done with hammer.
- Other jobs done with hammer or mallet.

Behavior:

- Jobber := in(job). Start(job)
- Start(job) := if easy(job) then Finish(job)
 else if hard(job) then Uhammer(job)
 else Usetool(job)
- Usetool(job) := Uhammer(job)+Umallet(job)
- $-Uhammer(job) := \overline{geth}.\overline{puth}.Finish(job)$
- $-Umallet(job) := \overline{getm}.\overline{putm}.Finish(job)$
- Finish(job) := $\overline{\mathtt{out}}(done(job))$. Jobber

Composition of Agents



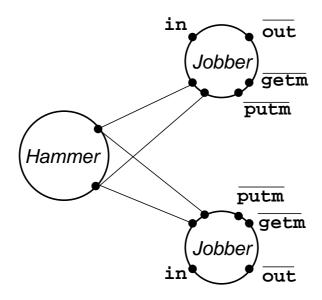
• Jobber-Hammer subsystem

- Jobber | Hammer
- Composition operator
- Agents may proceed independently or interact through complementary ports.
- Join complementary ports.

Two jobbers sharing hammer:

- Jobber | Hammer | Jobber
- Composition is commutative and associative.

Further Composition



• Internalisation of ports:

- No further agents may be connected to ports:
- Restriction operator \setminus
- \L internalizes all ports L.
- $-(Jobber \mid Jobber \mid Hammer) \setminus \{geth, puth\}$

• Complete system:

- Jobshop := (Jobber | Jobber | Hammer | Mallet) $\setminus L$
- $-L := \{ geth, puth, getm, putm \}$

Reformulations

- Alternative formulation:
 - ((Jobber | Jobber | Hammer)\{geth, puth}
 | Mallet)\{getm, putm}
 - Algebra of combinators with certain laws of equivalence.
- Relabelling Operator
 - $-P[l'_1/l_1,\ldots,l'_n/l_n]$ - $f(\overline{l}) = \overline{f(l)}$

- Semaphore agent
 - − Sem := get.put.Sem
- Reformulation of tools
 - Hammer := Sem[geth/get, puth/put]
 - $-\mathit{Mallet} := \mathit{Sem}[\mathtt{getm/get}, \, \mathtt{putm/put}]$

Equality of Agents

• Five basic operators:

- Prefix: $\alpha.P$

- Summation: P+Q

- Composition: $P \mid Q$

- Restriction: $P \setminus \{l_1, \ldots, l_n\}$

- Relabelling: $P[l'_1/l_1,\ldots,l'_n/l_n]$

• Strongjobber only needs hands:

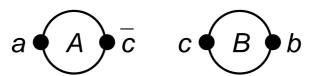
- Strongjobber := $in(job).\overline{out}(done(job)).$ Strongjobber

• Claim:

- Jobshop = Strongjobber | Strongjobber
- Specification of system Jobshop
- Proof of equality required.

Action and Transition

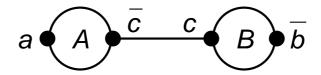
- Names and co-names
 - Set A of names (geth, ackin, ...)
 - Set \underline{A} of co-names ($\overline{\mathtt{geth}}$, $\overline{\mathtt{ackin}}$, ...)
 - Set of labels $L = A \cup \overline{A}$
- ullet Transition $P \xrightarrow{l} Q$
 - Hammer $\overset{ ext{geth}}{ o}$ Busyhammer
 - Busyhammer $\overset{ ext{puth}}{ o}$ Hammer
- ullet Agents A and B



- $-A := a.A', A' := \overline{c}.A$
- $-B := c.B', B' := \overline{b}.B$

Composite Agents

ullet Composite Agent A|B



- $-A \stackrel{a}{\rightarrow} A'$ allows $A|B \stackrel{a}{\rightarrow} A'|B$
- $-A' \xrightarrow{\overline{c}} A$ allows $A'|B \xrightarrow{\overline{c}} A|B$
- $-A' \xrightarrow{\overline{c}} A$ and $B \xrightarrow{c} B'$ allows $A'|B \xrightarrow{\tau} A|B'$
- Completed (perfect) action τ .
 - Simultaneous action of both agents.
 - Internal to composed agent.
 - $-\mathit{Act} = L \cup \{\tau\}$

Internal versus external actions

- Internal actions are ignored.
- Only external actions are visible.
- Two systems are equivalent if they exhibit same pattern of external actions.
- $-P \xrightarrow{\tau} P_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} P_n$ equivalent to $P \xrightarrow{\tau} P_n$

Restrictions

• Restriction $(A|B) \backslash c$



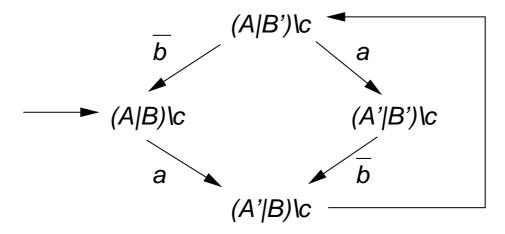
- $-P \xrightarrow{\alpha} P' \text{ allows } P \backslash L \xrightarrow{\alpha} P' \backslash L$ (if α , $\overline{\alpha}$ not in L)
- Transition (derivation) tree

$$(A|B) \ c \\ \downarrow a \\ (A'|B) \ c \\ \downarrow \tau \\ (A|B') \ c \\ \downarrow a \\ (A'|B) \ c \\ \downarrow a \\ (A'|B) \ c$$

$$(A'|B) \ c \\ (A'|B) \ c$$

Transition Graph

• Transition graph



$$-(A|B) \setminus c = a.\tau.C$$
$$-C := a.\overline{b}.\tau.C + \overline{b}.a.\tau.C$$

- Composite system
 - Behavior defined without use of composition combinator | or restriction combinator!
- Internal communication

$$-\alpha.\tau.P = \alpha.P$$

$$-\left(A|B\right)\backslash c = a.D$$

$$-D := a.\overline{b}.D + \overline{b}.a.D$$

The Basic Language

- Agent expressions
 - Agent constants and variables
 - Prefix $\alpha.E$
 - Summation ΣE_i
 - Composition $E_1|E_2$
 - Restriction $E \setminus L$
 - Relabelling E[f]
- No value transmission between agents
 - Just synchronization.

The Transition Rules

- Act $\alpha.E \xrightarrow{\alpha} E$
- $\bullet \operatorname{Sum}_{j} \quad \xrightarrow{E_{j} \xrightarrow{\alpha} E'_{j}} \sum E_{i} \xrightarrow{\alpha} E'_{j}$
- $\bullet \; \mathsf{Com}_1 \quad \frac{E \xrightarrow{\alpha} E'}{E|F \xrightarrow{\alpha} E'|F}$
- $\bullet \ \mathsf{Com}_2 \quad \frac{F \overset{\alpha}{\to} F'}{E|F \overset{\alpha}{\to} E|F'}$
- $\bullet \ \mathsf{Com}_3 \quad \frac{E \xrightarrow{l} E' \quad F \xrightarrow{\overline{l}} F'}{E|F \xrightarrow{\mathcal{T}} E'|F'}$
- Res $\xrightarrow{E \xrightarrow{\alpha} E'} (\alpha, \overline{\alpha} \text{ not in } L)$
- Rel $E \xrightarrow{} E'$ $E[f] \xrightarrow{f(\alpha)} E'[f]$
- $\bullet \text{ Con } \frac{P \xrightarrow{\alpha} P'}{A \xrightarrow{\alpha} P'} \quad (A := P)$

Derivatives and Derivation Trees

- Immediate derivative of E
 - Pair (α, E')
 - $-E \stackrel{\alpha}{\rightarrow} E'$
 - -E' is α -derivative of E
- Derivative of E
 - Pair $(\alpha_1 \dots \alpha_n, E')$
 - $-E \stackrel{\alpha_1}{\rightarrow} \dots \stackrel{\alpha_n}{\rightarrow} E'$
 - -E' is $(\alpha_1...\alpha_n$ -)derivative of E
- ullet Derivation tree of E

$$E_{11} \dots$$

$$\nearrow \alpha_{11}$$

$$E_{1}$$

$$\nearrow \alpha_{1}$$

$$\nearrow \alpha_{1}$$

$$\searrow \alpha_{12}$$

$$E_{12} \dots$$

$$E_{2} \dots$$

Examples of Derivation Trees

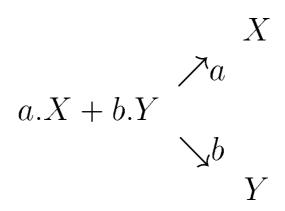
• Partial derivation tree

$$(a.E + b.0) | \overline{a}.F) \setminus a$$

$$(a.E + b.0) | \overline{a}.F) \setminus a$$

$$(0 | \overline{a}.F) \setminus a$$

 $\bullet a.X + b.Y$



- Behavioural equivalence
 - Two agent expressions are behaviourally equivalent if they yield the same total derivation trees

The Value-Passing Calculus

- Values passed between agents
 - Can be reduced to basic calculus.

$$-C := in(x).C'(x)$$
$$C'(x) := \overline{out}(x).C'(x)$$

$$-C := \sum_{v} \operatorname{in}_{v}.C'_{v}$$

$$C'_{v} := \overline{\operatorname{out}}_{v}.C (v \in V)$$

- Families of ports and agents.

- The full language
 - Prefixes a(x).E, $\overline{a}(e).E$, $\tau.E$
 - Conditional if b then E
- Translation

$$-a(x).E \Rightarrow \sum_{v}.E\{v/x\}$$

$$-\overline{a}(e).E \Rightarrow \overline{a}_e.E$$

$$-\tau.E \Rightarrow \tau.E$$

- if b then $E \Rightarrow (E, if b \text{ and } 0, otherwise)$