lypes O eol/Jdavac warnings

ESC/Java2 warnings fall into various categories:

- warnings about possible runtime exceptions: (Cast,
Null, NegSize, IndexTooBig, IndexNegative, ZeroDiv,
ArrayStore)

ESC/Java2 Warnings

David Cok, Joe Kiniry, and Erik Poll

® These are the most common runtime exceptions
caused by coding problems (that is, not by explicitly
throwing an exception)

® They do not include nearly all of the possible
runtime exceptions

® Most of the others are explicitly thrown by various
library methods

Eastman Kodak Company, University College Dublin,

and Radboud University Nijmegen

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial —p.1/?? David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tu

Cast Warning Cast Warning

The Cast warning occurs when ESC/Java2 cannot verify
that a ClassCastException will not be thrown:

public class CastWarning {
public void m(Object 0) {

String s = (String)o; So is this:
b public class CastWarningOK2 {
b //@ requires o instanceof String;
results in publlc_: void m(Obj?ct o) {
String s = (String)o;
__ 3

CastWarning.java:3: Warning: Possible type cast error (Cast) }
String s = (String)o;

But this is OK:

public class CastWarningOK {
public void m(Object 0) {
if (o instanceof String) { String s = (String)o; }
3
}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial —p.3/?? David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tu

NUll vvarning

The Null warning occurs when ESC/Java2 cannot verify that
a NullPointerException will not be thrown:

public class NullWarning {
public void m(Object 0) {
int 1 = o.hashCode();
}
}

results in

NullWarning.java:3: Warning: Possible null dereference (Null)
int 1 = o.hashCode();

But this is OK:

public class NullWarningOK {
public void m(/*@ non_null =/ Object o) {
int i = o.hashCode();
T
b

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.5/??

ZeroDiv, index Warnings

e ZeroDiv - issued when a denominator (integer division)
may be O

e NegSize - issued when the array size in an array
allocation expression may be negative

e IndexNegative - issued when an array index may be
negative

e IndexTooBig - issued when an array index may be
greater than or equal to the array length

public class Index {
void mQ) {

int i = 0;
int j = 8/i; // Causes a ZeroDiv warning
Object[] oo = new Object[i-1]; // NegSize warning
00 = new Object[10];
i = oo[-1]-hashCode(); // IndexNegative warning
1 = oo[20]-hashCode(); // IndexTooBig warning

} David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial —p.7/??

AlTayotore vvarning

The ArrayStore warning occurs when ESC/Java2 cannot verify that the assignment
of an object to an array element will not result in an ArrayStoreException:
public class ArrayStoreWarning {
public void m(Object 0) {
Object[] s = new String[10];
s[0] = o;
}
}

results in

ArrayStoreWarning.java:4: Warning: Type of right-hand side possibly r
a subtype of array element type (ArrayStore)
s[0] = o;

But this is OK:
public class ArrayStoreWarningOK {
public void m(Object 0) {
Object[] s = new String[10];
if (o instanceof String) s[0] = o;
}
3

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tu

Types of ESC/Java2 warnings

ESC/Java2 warnings fall into various categories:

- warnings about possible runtime exceptions: (Cast,
Null, NegSize, IndexTooBig, IndexNegative, ZeroDiv,
ArrayStore)

- warnings about possible method specification
violations: (Precondition, Postcondition, Modifies)

® These are all caused by violations of explicit
user-written method specifications

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tu

Fre, Fost warnings Frame conditions

e To reason (modularly) about a call of a method, one

These warnings occur in response to user-written must know what that method might modify: this is
preconditions (requires), postconditions (ensures, signals), specified by

or assert statements. ° assignab|e clauses

public class PrePost { //@ assignable x, o.x, this.*>, o.>, a[*], a[3], a[4..5];

//@ requires i >= 0;
//@ ensures \result == i;
public int m(int i);

®* modifies clauses (a synonym)
® pure modifier

//@ pure
//@ ensures \result > 0: public int getX() { return x; }
public int mmQ) {) e Assignable clauses state what fields may be assigned
int j = m(-1); // Pre warning - argument must be >= 0 within a method - this is the set of what might be
} modified
//@ ensures \result > 0; e The default assignable clause is
public int mmn() { assignable \everything; (but it is better to be explicit
int j = m(0); because \everything; is not fully implemented and
return y. . ESC/Java2 can reason better with more explicit frame
} /7 Post warning - result is 0 and should be > 0 .-
3 conditions)
ﬁ e A pure method is assignable \nothing;
Frame conditions Modifi es warnings
For example, in
e A Modifies warning indicates an attempt to assign to an public class ModifiesWarning {
object field that is not in a modifies clause int i;

e Note: Some violations of modifies clauses can be

_ //@ assignable i;
detected at typecheck time.

void m(/*@ non_null =/ ModifiesWarning o) {
e Note also: Handling of frame conditions is an active 1;

i=
area of research o.i = 2; // Modifies warning
')

}

we don’t know if o equals this; since only this.i may be
assigned, ESC/Java2 produces

ModifiesWarning.java:7: Warning: Possible violation of modifies claus
o.i = 2; // Modifies warning

Associated declaration is "ModifiesWarning.java'", line 4, col 6:
//@ assignable i;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.11/2? David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

lypes O eol/Jdavac warnings

ESC/Java2 warnings fall into various categories:

- warnings about possible runtime exceptions: (Cast,
Null, NegSize, IndexTooBig, IndexNegative, ZeroDiv,
ArrayStore)

- warnings about possible specification violations:
(Precondition, Postcondition, Modifies)

- non null violations (NonNull, NonNullInit)

® These warnings relate to explicit non_null field or
parameter specifications

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial —p.13/??

NonNull warning

A NonNull warning is produced whenever an assignment is
made to a field or variable that has been declared non_null
but ESC/Java2 cannot determine that the right-hand-side
value is not null.

public class NonNull {
/*@ non_null =/ Object o;

public void m(Object o0o) { o = oo; } // NonNull warning
}

produces

NonNull .java:4: Warning: Possible assignment of null to variable
declared non_null (NonNull)

public void m(Object o0o) { o = oo; } // NonNull warning
Associated declaration is "NonNull._java™, line 2, col 6:

/*@ non_null =/ Object o;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.15/2?

NOnNulrmit warning

Class fields declared non_null must be initialized to values
that are not null in each constructor, else a NonNullinit
warning is produced.

public class NonNulllnit {
/*@ non_null =/ Object o;

public NonNulllnitQ { }
}

produces
NonNullInit.java:4: Warning: Field declared non_null possibly
not initialized (NonNulllnit)

public NonNulllnit() { }

Associated declaration is "NonNulllnit.java"™, line 2, col 6:
/*@ non_null =/ Object o;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

NonNull warning
But this is OK

public class NonNull {

/*@ non_null =/ Object o;

public void m(/*@ non_null =/ Object 00) { o = 00; }
3

So is this

public class NonNull {
/*@ non_null =/ Object o;
public void m(Object o00) {

if (00 1= null) o = 00: non_null can be applied

3 - a field
} - a formal parameter
_ _ - areturn value
So is this - a local variable

public class NonNull { - ghost and model varial

/*@ non_null =/ Object o;
public void mQ {
o = new Object();
}
3

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

lypes O eol/Jdavac warnings

ESC/Java2 warnings fall into various categories:

- warnings about possible runtime exceptions: (Cast,
Null, NegSize, IndexTooBig, IndexNegative, ZeroDiv,
ArrayStore)

- warnings about possible method specification
violations: (Precondition, Postcondition, Modifies)

- non null violations (NonNull, NonNullInit)

- loop and flow specifications (Assert, Reachable,
Looplnv, DecreasesBound)

® These are caused by violations of specifications in a
routine body

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial —p.17/??

Loop assertions

e Aloop_invariant assertion just before a loop asserts a
predicate that is true prior to each iteration and at the
termination of the loop (or a Looplnv warning is issued).

e A decreases assertion just before aloop asserts a (int)
gquantity that is non-negative and decreases with each
iteration (or a DecreasesBound warning is issued).

e Caution: Loops are checked by unrolling a few times.

Example:

public class LooplnvWarning {
public int max(/*@ non_null =/ int[] a) {
int m=Integer.MAX_VALUE;
//@ loop_invariant (\forall int j; 0<=j && j
//@ decreases a.length - @ - 1;
for (int 1=0; i<a.length; +™) {
if (m < afil) m = ali];
3 In the scope of the loop variable
return m;
}
}

afjl <= m;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial —p.19/??

boay assertions

e Assert: warning occurs when an assert annotation may not
be satisfi ed

e Reachable: not in JML, only in ESC/Java2; occurs with the
/l@ unreachable; annotation, which is equivalent to
/@ assert false;

Example:

public class AssertWarning {
//@ requires i >= 0;
public void m(int i) {
//@ assert i >= 0; // OK
—i;
//@ assert i >= 0; // FAILS
}
public void n(int i) {
switch (i) {
case 0,1,2: break;
default: //@ unreachable; // FAILS
3
}

} David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

Types of ESC/Java2 warnings

ESC/Java2 warnings fall into various categories:

- warnings about possible runtime exceptions: (Cast,
Null, NegSize, IndexTooBig, IndexNegative, ZeroDiv,
ArrayStore)

- warnings about possible method specification
violations: (Precondition, Postcondition, Modifies)

- non null violations (NonNull, NonNullInit)

- loop and flow specifications (Assert, Reachable,
Looplnv, DecreasesBound)

- warnings about possible class specification
violations: (Invariant, Constraint, Initially)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

Class Invariant warnings initially warning

Invariant and constraint clauses generate additional An initially clause is a postcondition for every constructor:
postconditions for every method. If they do not hold,

. . public class Initially {
appropriate warnings are generated:

public class Invariant { public int i; //@ initially i == 1;
public int i,j;

//@ invariant i > 0: public Initially() { } // does not set i - Initially warning

//@ constraint j > \old(j); T
]] produces
public void mQ) {
i =-1; // will provoke an Invariant error TTTTmmmmmTTmmTmmOmmOmmmm OO
j = j-1:; 7/ will provoke a Constraint error Initially.java:5: Warning: Possible violation of initially condition
} ’ at constructor exit (Initially)
} public Initially() { } // does not set i - Initially warning
Associated declaration is "Initially.java™, line 3, col 20:
public int i; //@ initially i ==
Types of ESC/Java2 warnings Exceptions - Errors
ESC/Java2 warnings fall into various categories: e Java Errors (e.g. OutOfMemoryError) can be thrown at
- warnings about possible runtime exceptions: (Cast, any time _ _
Null, NegSize, IndexTooBig, IndexNegative, ZeroDiv, ® No declarations are needed in throws clauses
ArrayStore) ® No semantics are implied by JML
- warnings about possible method specification ® No checking is performed by ESC/Java2
violations: (Precondition, Postcondition, Modifies)
- non null violations (NonNull, NonNullInit)
- loop and flow specifications (Assert, Reachable, Throwable
Looplnv, DecreasesBound)
Error Exception

- warnings about possible class specification

violations: (Invariant, Constraint, Initially)

- exception problems (Exception) checked exceptions RuntimeException

® These warnings are caused by undeclared

. uncheckes exception
exceptions

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.23/2? David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

Cneckea exXxceptlons uncneckea exceptions

e Java checked exceptions (e.g. FileNotFoundException) e Java unchecked exceptions (e.g.
are Exceptions that are not RuntimeExceptions: NoSuchElementException) are RuntimeExceptions:

® Declarations of exceptions mentioned in the body ® Java does not require these to be declared in throws
are required in throws clauses clauses

® ESC/Java2 checks during typechecking that throws e ESC/Javaz is stricter than Java - it will issue an
declarations are correct (as a Java compiler does) Exception warning if an unchecked exception might

* Typically specified in signals clauses in JML be expllt_:ltly thrown but is not declared in a throws

declaration

® ESC/Java2 checks via reasoning that signals
conditions hold

® Default specification is that declared exceptions
may occur: signals (Exception) true;

® Caution: currently ESC/Java2 will assume that an
undeclared unchecked exception will not be thrown,
even if it is specified in a signals clause -
Declare all unchecked exceptions that might be

e ESC/Java2 presumes that checked exceptions not thrown!
declared in a throws clause will not occur. (e.g. especially when there is no implementation
to check).
So this Exception warning Types of ESC/Java2 warnings
public class Ex { ESC/Java2 warnings fall into various categories:

public void m(Object 0) {

if (1(o instanceof String)) throw new ClassCastException(); - warnings about possible runtime exceptions: (Cast,

Null, NegSize, IndexTooBig, IndexNegative, ZeroDiyv,
}
} ArrayStore)
produces - yvamings about pos_s_ible method _specificati_o_n
__ violations: (Precondition, Postcondition, Modifies)
Ex.java:4: Warning: Possible unexpected exception (Exception) - non null violations (NonNuII NonNuIIInit)

} D

~ - loop and flow specifications (Assert, Reachable,
Execution trace information: Looplnv, DecreasesBound)

Executed then branch in "Ex.java', line 3, col 32.

- warnings about possible class specification

Executed throw in "Ex.java', line 3, col 32. i i . i o
violations: (Invariant, Constraint, Initially)

““““““““““““““““““““““““““““““““““““““ - exception problems (Exception)

Turn off this warning by - multithreading (Race, RaceAllNull, Deadlock)

declaring the exception in a throws clause . .
¢ 9 P ® These warnings are caused by potential problems

e using //@ nowarn Exception; on the offending line with monitors

e using a -nowarn Exception command-line option ® Multithreading problems caused by the absence of
any synchronization are not detected cur cscma

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.27/2?

Race conditions

Java defines monitors associated with any object and
allows critical sections to be guarded by
synchronization statements.

ESC/Java permits fields to be declared as monitored by
one or more objects.

To read a monitored field, at least one monitor must be
held (or a Race warning is issued).

To write a monitored field, all non-null monitors must be
held (or a Race warning is issued).

To write a monitored field, at least one of its monitors
must be non-null (or a RaceAllNull warning is issued).

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial —p.29/??

Deadlocks

Deadlocks occur when each thread of a group of
threads needs monitors held by another thread in the
group.

One way to avoid this is to always acquire monitors in a
specific order.

This requires

® the user state a (partial) order for monitors (typically
using an axiom)

® that it be clear before acquiring a monitor that the
thread does not hold any ‘larger’ monitors (typically
a precondition)

Checking for Deadlock warnings is off by default but
can be turned on with -warn Deadlock.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.31/2?

rRace warnings

For example,

public class RaceWarning {
//@ monitored
int i;

void mQ) {
i = 0; // should have a synchronization guard

}
}

produces

RaceWarning.java:6: Warning: Possible race condition (Race)
i = 0; // should have a synchronization guard

Associated declaration is '"RaceWarning.java", line 2, col 6:
//@ monitored

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

Deadlock warnings

For example:

public class DeadlockWarning {
/*@ non_null =/ final static Object o = new Object();
/*@ non_null =/ final static Object oo = new Object();

//@ axiom 0 < 00;

//@ requires \max(\lockset) < o;
public void mQ) {

synchronized(o) { synchronized(oo) { }}
}

//@ requires \max(\lockset) < o;
public void mm(Q) {
(_synchronized(oo) { synchronized(o) { }} 7/ Deadlock warning

}

}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

lypes O eol/Jdavac warnings

ESC/Java2 warnings fall into various categories:

- warnings about possible runtime exceptions: (Cast,
Null, NegSize, IndexTooBig, IndexNegative, ZeroDiv,
ArrayStore)

- warnings about possible method specification
violations: (Precondition, Postcondition, Modifies)

- non null violations (NonNull, NonNullInit)

- loop and flow specifications (Assert, Reachable,
Looplnv, DecreasesBound)

- warnings about possible class specification
violations: (Invariant, Constraint, Initially)

- exception problems (Exception)
- multithreading (Race, RaceAllNull, Deadlock)
- a few others (OwnerNull, Uninit, Unreadable, Writable)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial —p.33/??

trace information

For complicated bodies, the warning messages give some
information about which if-then-else branches caused the
warning:

public class Trace {
//@ ensures \result > 0;
int m(int i) {
if (i == 0) return 1;
if (i == 2) return O;
return 4;

}
}
produces

Trace.java:8: Warning: Postcondition possibly not established (Post)

}

Associated declaration is "Trace.java'", line 2, col 6:
//@ ensures \result > 0;
Execution trace information:
Executed else branch in "Trace.java", line 4, col 4.
Executed then branch in "Trace.java', line 5, col 16.
Executed return in "Trace.java", line 5, cal,

id %IQ‘ Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.35/2?

otner warnings

Uninit: used with the uninitialized annotation

OwnerNull: see the ESC/Java User Manual for a
description

Unreadable: occurs with the readable_if annotation on
shared variables. [IML’s change of syntax from
readable if to readable is not complete in ESC/JavaZ2.]

Writable: occurs with the writable_if annotation on
shared variables. [IML's change of syntax from
writable if to writable is not complete in ESC/Java2.]

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

Counterexamples

Sometimes when a specification is found to be invalid,
ESC/Java2 will produce a counterexample context.

A full context will be produced with the
-counterexample option

These are difficult to read, but can give information
about the reason for failure.

They state formulae that the prover believes to be true;
if there is something you think should not be true, that
is a hint about the problem.

Note also: Typically only one warning will be issued in
a given run.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutc

	Types of ESC/Java2 warnings
	Cast Warning
	Cast Warning
	Null Warning
	ArrayStore Warning
	ZeroDiv, index Warnings
	Types of ESC/Java2 warnings
	Pre, Post warnings
	Frame conditions
	Frame conditions
	Modifies warnings
	Types of ESC/Java2 warnings
	NonNullInit warning
	NonNull warning
	NonNull warning
	Types of ESC/Java2 warnings
	Body assertions
	Loop assertions
	Types of ESC/Java2 warnings
	class invariant warnings
	Initially warning
	Types of ESC/Java2 warnings
	Exceptions - Errors
	Checked Exceptions
	Unchecked Exceptions
	Exception warning
	Types of ESC/Java2 warnings
	Race conditions
	Race warnings
	Deadlocks
	Deadlock warnings
	Types of ESC/Java2 warnings
	Other warnings
	trace information
	Counterexamples

