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ABSTRACT

Allowing method invocations in program specifications in-
creases modularity and comprehensibility and is as impor-
tant in specifications as it is in the program itself. However,
method invocations do not map neatly into the first-order
logics that are often used for assuring the correctness of
specifications. One problem is translating specifications in
a way that acknowledges the potential for exceptional be-
havior. The ESC/Java2 tool has been able to achieve a
practical translation of method invocations within the de-
sign constraints of its parent tool, ESC/Java. Furthermore,
the techniques used are applicable to other specification con-
structs such as quantifiers and model variables.

1. INTRODUCTION

Research and practical capability in program verification
is advancing significantly with clearer semantics, evolution
of languages and tools, and experience with industrial-scale
software systems. Using method calls in specifications pro-
vides a level of abstraction and conciseness that promotes
reading, writing and understanding specifications and will
likely assist in their automated verification as well. How-
ever, method calls in specifications have not been widely sup-
ported and have unclear semantics in the light of potential
exceptional behavior. This paper discusses the implementa-
tion of an extension to the static program checker ESC/Java
that allows the use of method calls in specifications, with
a discussion of the difficulties caused by the possibility of
exceptions or non-terminating behavior. With that accom-
plished, several other programming language constructs can
also be handled by the underlying prover. The approach de-
scribed here is applicable to any source code translator in-
terfacing with a prover that operates in a generic first-order
logic (as opposed to a logic specifically designed to handle
programming language constructs).

The solution described in this paper was implemented and
tested using the Java Modeling Language, the ESC/Java2
project, and the Simplify prover, which are briefly described
in sections 2-4. Section 5 describes a solution for translating
method calls and issues arising from exceptional termination,
with an example in the Appendix. Applications to other
specification language features are presented in section 6.
The paper ends with descriptions of some future work and
of related work and conclusions in sections 7 and 8.
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2. THE JAVA MODELING LANGUAGE

The Java Modeling Language (JML) has by now been de-
scribed in several publications [1, 13, 14] and that full de-
scription will not be repeated here. The discussion in this
paper can be illustrated using simple preconditions and post-

conditions.
e A requires keyword followed by a predicate declares

a precondition for a routine.

e A ensures keyword followed by a predicate declares a
normal postcondition for a routine.

e A signals keyword declares a postcondition that holds
if the routine exits with the given exception.

e A diverges keyword declares a condition that holds if
the routine never terminates.

Specifications are included in the text of a Java program by
placing them in specially formatted comments, as shown in
the figures. The syntax of the specification predicates fol-
lows Java closely. It excludes any operations that have side
effects, such as the increment operator ++. Other operations,
such as arithmetic and comparison operators, have the same
syntax and semantics as in Java. In particular, specification
predicates may include method calls, if those methods are
designated pure; tools supporting JML can then check that
the implementations of pure methods have no side-effects.

3. ESC/JAVA2

The ESC/Java2 tool [5], an extension of ESC/Java [7, §],
implements the translation of Java programs and JML spec-
ifications into a target logic. ESC/Java was a pioneering
tool in the application of static program analysis and veri-
fication technology to annotated Java programs. The tool
and its built-in prover operate automatically with reason-
able performance. The program annotations needed are eas-
ily read, written and understood by those familiar with Java
and are partially consistent with the syntax and semantics of
the separate Java Modeling Language (JML) project [1, 16].
Consequently, the original ESC/Java was a research success
and was also successfully used by other groups for a variety
of case studies [9].

The ESC/Java2 project extends ESC/Java and its long-
term utility by addressing a number of issues.

e ESC/Java2 fully parses current JML and Java 1.4, so
it is compatible with the variety of tools that now work
with JML specifications.

e ESC/Java2 checks more of JML than did ESC/Java.
For example, frame conditions were not checked in
ESC/Java, but errors in frame conditions could cause



the prover to reach incorrect conclusions. ESC/Java
also lacked the ability to use methods in annotations,
limiting the annotations to statements only about low-
level representations.

e ESC/Java2 provides ongoing distribution and mainte-
nance. As companies were bought and research groups
disbanded, there was no continuing development or
support of ESC/Java; the tool was untouched for over
two years and its source code was not available.

The engineering goals of ESC/Java were to be automatic
and useful in finding bugs and violations of program spec-
ifications. It was not designed to be complete nor entirely
sound. ESC/Java2 has continued that spirit, though some
unsound aspects have been corrected.

It is important to note that ESC/Java translates the Java
source code into a single-assignment guarded command lan-
guage [6]. It does not incorporate an explicit notion of pro-
gram state in the logical structure that represents the pro-
gram. This simplifies the logic and makes it much easier to
reason about variables that remain unchanged; however, it
also adds difficulty to handling loops and to the translation
of method calls used in annotations.

4. SIMPLIFY

ESC/Java2 and ESC/Java translate program source code
into guarded commands, then into a single-assignment rep-
resentation, and finally into verification conditions. These
conditions are passed to an accompanying prover that judges
them to be valid or invalid and may produce counterexam-
ples to demonstrate invalidity. The prover used is Simplify
[19, 22], which accepts verification conditions expressed in a
first-order logic (including universal and existential quantifi-
cation) with equality and untyped total functions, extended
with a simple theory of arithmetic.

Simplify implements interacting decision procedures that
cooperate to assess the satisfiability of a set of input formu-
las. In the context of a programming language, the prover
has knowledge of numerical and boolean values and oper-
ators on those values. A base set of axioms describes the
behavior of arrays, types, and the subtype relationship. Ob-
ject identity corresponds to a simple equality relationship
among untyped, uninterpreted constants. Object fields are
modeled as arrays: a field named f is considered an array,
and a field reference o.f is translated as the array reference
f[o]. Other constructs are modeled as function terms.

S.  TRANSLATING METHOD CALLS

5.1 Method calls within annotations

The problem at hand is to translate expressions containing
method calls into the target logic described above. Informa-
tion about the behavior of a method resides in the specifica-
tions of the method being called. Thus, we need to translate
the specifications of the called method in a manner similar
to that used to translate the calling expression.

In some cases there exists an expression whose value is
the result of the method call. For instance, if a method’s
specifications have a postcondition of the form

ensures \result == ... ;
then one could extract such an expression, at least under the
preconditions for which the postcondition holds. (The JML
symbol \result represents the result returned by a method.)
That expression could then be substituted for the method

call itself, after appropriate substitution of actual for formal
arguments. This procedure does not work in general how-
ever. There may not be such an expression available. There
may be more than one such expression available, requiring a
prescient choice of the best one to substitute for the method
call. In addition, the expression being substituted may con-
tain other method calls that will themselves require substitu-
tion; the substitution procedure may not terminate if there is
any recursive use of method calls in the annotations. Even
without recursion, the depth of rewriting can create very
large verification conditions (easily consuming 256MB on the
ordinary but realistic sets of specifications contained in the
JML library, in experiments with ESC/Java2).

Inlining the implementation of the called method is an-
other approach. This can result in large, unwieldy verifica-
tion conditions and does not work in the presence of recur-
sion. It also can lose natural relationships between identi-
cal subexpressions and complicates the logical predicates of
a specification with the imperative constructs of a method
body. Also, we would like to be able to reason about uses of
methods without needing their implementations.

The approach most appropriate to modular reasoning in
the context of ESC/Java2 is to define a new uninterpreted
function in the logic corresponding to each pure method used
in a specification. A naive translation of methods to func-
tion terms would translate a method call of sort() into a
function term with no arguments, namely, (sort). This pro-
cedure encounters the following complications.

e As will be obvious to any Java programmer, the argu-
ment list of the method must include the receiver ob-
ject (this), if the method is not static.! Thus a method
call sort() is translated as (sort this). This allows
a natural distinction between the method calls sort ()
and a.sort(). These are translated into the terms
(sort this) and (sort a’), where a’ is the translation
of the programming language expression a. Reasoning
about aliasing is naturally handled as well, since if it is
established, for example, that (EQ this a’), then (EQ
(sort this) (sort a’)) will immediately follow.

e Secondly, the method implementation may use fields of
the receiving object that are not listed in the argument
list. The values of instance fields may be considered to
be implicitly included via the this argument, but their
values then depend on the current program state.

e Most importantly, the semantics of equality among
function terms is not appropriate to the reference se-
mantics of an object-oriented language such as Java.
Two function terms in the logic are equal if they have
the same function symbol, the same number of argu-
ments, and the arguments are pairwise equal. This
definition of equality is fine for the immutable values
of Java’s primitive types, but not for reference values.
Reference values referring to the same object in differ-
ent program states will test equal even though their
internal states may be different, since the logic used
does not contain a global memory model.

The translation procedure adopted here is to include as
an argument of the method a value indicating the program
state in which the method is being evaluated. Remember
that a method used in an annotation must be pure, that

'Not quite as obviously, functions representing constructors
of inner classes must also include a reference to the enclosing
class as an argument.



is, it must not change the program state. Consequently the
pre- and post-conditions are evaluated in a common state.
The state constant is uninterpreted; that is, it is not used
in any context other than to distinguish different program
states for different method calls. With this procedure we
can maintain the single-assignment mechanism adopted by
ESC/Java, without introducing a full memory model into
the logic, but still utilize a first-order logic for proof obliga-
tions. Having a representation of explicit state would enable
a more concise translation, since then the assumptions about
the behavior of methods could be universally quantified by
a state variable. However, that would make for a more com-
plex logic and in any case would be a different design than
that adopted by ESC/Java and extended by ESC/Java2.

As uninterpreted values, the state constants serve sim-
ply to distinguish the values produced by different instances
of method calls in annotations. In each case the single-
assignment translation step ensures that each field and vari-
able used in the pre- and postconditions of the method is
translated with its current value in that state. Fields that are
not mentioned in a frame condition (assignable or modifies
clause) are presumed to be unchanged

Functions in Simplify’s logic are total. If, as is common,
the JML specifications for a method are partial, the new
function introduced by this translation will be underspeci-
fied. This is consistent with how partiality is handled else-
where in JML.

However, there is an additional difficulty: method imple-
mentations are not necessarily guaranteed to terminate nor-
mally, returning a value. This affects how the method should
be translated and is discussed in the following section.

5.2 Handling abnormal termination

In JML, a method’s ensures postcondition states that
(under the given precondition) if a method terminates nor-
mally, then the given predicate holds; the signals postcon-
dition states that if the method terminates with the given
exception, then its predicate holds. In JML’s semantics, if
a method terminates with an exception or does not termi-
nate at all, the result value is undefined. Thus, in order
to reason about the use of a method call in an annotation,
we must know when a method does terminate. That is, the
assumption we need to generate for a method has the form

(\forall args; normalReturn(args) ==>
normalPostconditionHolds(args)) .

Consider the code fragment of Fig. 1. Since the diverges
predicate is false, we know that the method will always
terminate. Similarly, the signals clause states that if ! (o
== null) then the method will not terminate exceptionally.
Hence if ! (o == null) the method will terminate normally;
consequently the behavior of the method is defined by the
assumption

(\forall Example o; !(o == null) ==> (o!=null ==>

valueOfI(state,0) == o0.1i)).
In general, with predicates for the signals and diverges
clauses, the generated assumption has the form
(\forall args ;
! (signalsPredicate(args) || divergesPredicate(args) )
==> ( precondition(args) ==> postconditionHolds(args))).

However, what if the user omits the signals clause, as in
Fig. 27 The default for an absent signals clause is true,
meaning that there is no restriction if the method terminates
exceptionally. The corresponding assumption is

(\forall Bad o; false==>(valueOfI(state,o0)==0.1i)).

class Example {
public int i;
}
public class Good {
/*@ ensures o!=null ==> \result == o0.i;
diverges false;
signals (Exception e) o == null; */
//@ pure
static public int valueOfI(Example o);

//@ ensures valueOfI(o) > 0;
public void init(Example o) ;

}

Figure 1: A class with a specification that includes
normal, abnormal and non-termination conditions.

public class Bad {
/*@ ensures \result == o0.i; */
/*@ pure */
static public int valueOfI(Example o);

//@ ensures valueOfI(o) > 0;
public void init(Example o);

}

Figure 2: An inadequately specified method.
Method valueOfI may throw an exception for any
argument.

This assumption is trivially true and says nothing that de-
fines the behavior of the value0fI method.

It is not uncommon for a method’s specifications to omit
the specification of exceptional behavior. The specification
writer is simply stating that as long as the method (or those
it calls) do not throw exceptions, the result will satisfy the
given postcondition. However, if a method that is used in an
annotation does not provide signals and diverges clauses,
the effect will be more significant. In that case, any com-
bination of method arguments might result in non-normal
termination. Thus the returned value of the method is un-
defined for any argument combination, and consequently no
conclusion about the behavior of the method will be able to
be drawn. Fortunately the result of omitting the signals
clause will be that the postcondition of the init method
(in the example here) will not be able to be established,
rather than, say, silently stating that the method meets its
specifications. However the naive specification writer might
be puzzled at this behavior without some warning that the
generated assumptions are trivially satisfied. In effect, for a
method that is used in an annotation, a specification that
omits a statement of exceptional and divergent behavior is
too weak to be useful.

One might take the approach that a method used in an
annotation is expected to terminate normally, at least for
the preconditions under which it is called (referred to as
implicit specification of exceptions below). However, this is
equivalent to assuming JML’s normal_behavior or

signals (Exception) false;
when a signals clause is missing. In contrast, the usual JML
semantics is that a missing signals clause is equivalent to



signals (Exception) true;.

A better approach (called explicit specification of excep-
tions) would require that any method used in an annota-
tion have a specification for its exceptional and divergent
behavior, as is shown in Fig. 1. The result of the method
in question will be undefined if the method does not ter-
minate normally. Thus the specification must at least be
detailed enough to preclude exceptional or divergent behav-
ior under the circumstances in which the method is called.
One can do this by stating the conditions under which any
Exception will not occur. If there is a predicate only for one
particular exception type, there is still the possibility that
for any argument some other exception might be thrown. A
simple specification idiom might be that methods used in
annotations only have normally terminating behavior (for
the preconditions in which they are used in a specification).
This sort of specification severely limits the behavior of any
subtypes. This approach has the advantage of a clear seman-
tics that is consistent with the current definition of JML; it
has the disadvantages that specifications for methods used
in annotations must be detailed (more so than nearly all
specifications already written) and that those specifications
are more constraining on subtypes.

5.3 The translation procedure

The translation, then, consists of the following steps:

e Select a unique function identifier for each method dec-
laration in the program. Overriding method declara-
tions have different identifiers than those of the meth-
ods they override.

e Define a unique state constant (distinct from all other
constants) for each unique program state within a call-
ing method’s implementation. A new state is created
after every operation with a side-effect. In practice,
state constants are only needed for those points in a
program where an annotation containing a method call
occurs.

e Where a method call is used in an annotation expres-
sion, translate that method invocation into the logic
as a function term. Use the unique identifier for the
method as the function name (based on the static type
of the receiver expression at the point of call). Include
as arguments the translations of (a) the state constant
for this program state, (b) the receiver object (if the
method is not static), and (c) each of the actual argu-
ments of the method call.

e The specifications of the called method must be turned
into assumptions.

— They are first desugared by combining precondi-
tions and postconditions into stand-alone impli-
cations of the form ([21] describes the details):

ensures precondition ==> postcondition; .

— Recalling the discussion of exceptional postcondi-
tions above, we use as the composite predicate the
expression

( !'signalsPredicate && !divergesPredicate ) ==
( precondition ==> postcondition ) .

— Any instance of \result is replaced by an in-
stance of the function term, with formal names
for its arguments.

— The expression is enclosed in a universal quantifi-
cation over its formal parameters.

Thus (in a class named Z)

requires i !'= 0;

signals (Exception) false;

diverges false;

ensures \result == i+1;

/*@ pure */ public int next(int i);

in a state with state constant stateX creates the as-

sumption
(\forall Z object; (\forall int i;
i != 0 ==> next(stateX,object,i) == i + 1)) .

Since values (e.g. of fields) are not extracted out of a
program state, there is no quantification over the state
constant. Instead the assumption above is repeated
with a different state constant in each context where
the method is called and any free variables are trans-
lated in the context of that call. Also, recall that since
the method being used in the annotation must be pure,
the preconditions, diverges conditions, signals condi-
tions, and normal postconditions are all evaluated in
the same state.

e In order to connect the use of a method call in the pro-
gram with its use in an annotation, an implicit postcon-
dition is added that equates the result of the method
to the term representing the method (e.g. ensures
\result == m(...)). This adds a corresponding as-
sumption about the result of a method call in the pro-
gram source code.

e If the called method has no specifications, then no
other assumptions are introduced describing the be-
havior of the method. This will limit the conclusions
that can be drawn. The only connection between the
value of a method call in one program state and the
value in another program state is the definition of the
value through the method’s specifications.

e JML allows annotations to appear in the body of a
method as well; assert statements are one example.
These are translated in the same way as postcondi-
tions; they simply use the appropriate state constant.
Since loops are partially unrolled by ESC/Java, they
can be handled without additional special treatment.

If there is more than one instance of the same method call
within a given program state, those calls are translated in the
same way, enabling the prover to identify their return values
as equal (even in the absence of specifications). If a method
call in the postcondition occurs within an argument of \old,
indicating it is to be evaluted in the pre-state, then it will
be translated using the state constant for the pre-state.

Appendix A contains a discussion of the details of an ac-
tual example translation.

6. APPLICATION TO OTHER
ANNOTATION CONSTRUCTS

With translation of method calls to an underlying first-
order logic enabled in ESC/Java2, several other specifica-
tion constructs can be readily translated and used in static
checking as well. These are described briefly in this section.

6.1 Constructor calls

Constructor calls can be treated as calls of static methods.
That is, they do not depend on an implicit this argument.
If they are constructors of a Java inner class, they will de-
pend on an implicit argument representing an instance of
the enclosing class. Since some of the arguments may be



reference values, the translated function must also have a
state constant as an argument. The assumptions about the
constructed value are formed from the specifications of the
constructor declaration.

Constructor calls are different than method calls in that
they dynamically allocate new objects on the heap. Thus the
result is a reference value not equal to any previous reference
value. ESC/Java2 (following ESC/Java) provides axioms
concerning allocation that ensure this behavior, but those
are beyond the scope of this paper.

6.2 Array allocation

Translating expressions such as new int[9] that allocate
new arrays is quite straightforward. These expressions do
not depend on the current state nor on any implicit receiver
argument. Consequently a single function whose arguments
include the dimensions of the array and the type of its ele-
ments is all that is needed. Just as for constructors, axioms
regarding allocation are required, so that the value produced
by a new array expression is known to be different than
any previously produced reference value. Axioms about the
dimensions, type, and initial values of the array are also
needed. ESC/Java included such a function and axioms in
its built-in axiom set, as does ESC/Java2.

6.3 Quantified expressions

Besides the usual universal and existential quantified ex-
pressions, JML also defines the quantifiers \min, \max, \sum,
\prod, and \numof. For example, the value of the expression

(\min int i; i <= 0 && i < 10; p(i))
is the smallest value of p(i) for i in the given range.

The translation of each of these consists of syntactically re-
placing the expression with a skolemized function call (whose
name is unique) and introducing appropriate assumptions
about the function. Implicit receiver and state arguments
are also needed, as described previously. If the quantifier is
within the scope of another quantified expression, there will
also need to be function arguments for any bound variable
used in the replaced expression.

One must also introduce assumptions concerning the value
of this introduced function, corresponding to the value of the
original quantified expression. For example, the assumptions
associated with

( \min decl; range-predicate; expr)
are
( \exists decl; range-predicate) ==>
( \exists decl; range-predicate && MIN(...)== expr)
and

( \forall decl; range-predicate ==> MIN(. ..)<= expr),
with suitable universal quantification and where MIN(...)
is replaced by the actual skolem function call expression.?

6.4 Model variables

Model variables are declarations of fields within annota-
tion comments that are not treated as fields of the object.
Rather a model variable is associated with a representation,
typically in terms of the internal state of the object. The
model variable may be used in annotations as an abstract
representation, or model, of some quantity related to the ob-

2The value of the quantified expression when the range pred-
icate is empty is not handled here. JML currently defines
this as the largest value of the type of the quantified ex-
pression (for \min, and the smallest such value for \max). It
might also be considered as undefined.

ject at hand. For example, Java’s java.util.Collection
interface, which has no implementation, might nonetheless
declare a model variable such as
public model instance non null JMLObjectBag
theCollection;
(using one of JML’s mathematical library classes). In this
example, any implementation of the Collection interface
is modeled with a field of type JMLObjectBag. Then, even
in the absence of an implementation of the method, a rou-
tine such as isEmpty() could use the model variable in the
specification
ensures \result <==> theCollection.isEmpty();
Model variables in JML may have a functional represen-
tation, a predicate representation, or no representation at
all. Work on translation of model variables in JML for the
LOOP tool occurred concurrently with the work in this pa-
per and is discussed in [3]. We came to a similar solution
and offer some additional observations here.

6.4.1 Functional representations

JML denotes a functional representation by the syntax
//@ represents x <- expression ;

There is a specific value, provided by the expression, for
the model variable (in a given program state). This ex-
pression could be simply substituted for occurrences of the
model variable, as stated by Breunesse and Poll [3]. How-
ever, this is successful only in simple cases. If there is heavy
use of model variables, the nested substitutions can be quite
deep. Furthermore, JML allows multiple redundant repre-
sentations, requiring a choice of which to use. Finally, direct
or mutual recursion would prohibit simple substitution. In
this implementation in ESC/Java2, representing functional
model variables by method calls was the better solution.

6.4.2 Predicate representations

JML also allows the values of model variables to be spec-

ified with a predicate representation:
//@ represents z \such_that predicate ;

In this case the predicate does not necessarily give an exe-
cutable expression for the model variable and may not even
constrain the model variable to a single value. As Breunesse
and Poll point out, if there are no possible values satisfying
the predicate, inconsistency in the generated assumptions
can result, if appropriate care is not taken.

In this case, we represent the model variable by a method
call, with state and receiver arguments as discussed above;
the such_that predicate becomes an assumption.

6.4.3 Model variables with no representation

A model variable, particularly in an abstract class or in-
terface, may have no representation at all. It may be used in
the specification of various methods, but its representation
would be supplied by derived classes that implement the in-
terface. Fig. 3 shows an example of such an interface. In this
situation, the model variables are still translated as method
calls, but now there are no assumptions generated from rep-
resents clauses. Instead, only the pre- and post-conditions
of methods whose specifications mention the model variable
provide information about the behavior of the variable.

Representation-less model variables do pose a challenge in
the translation and checking of method bodies. If the model
variable is assignable for a given method, then its value
may change in the course of execution of the body of that
method. But without a representation, there is no way to



public interface NoRep {
//@ public model String outputText;
//@ invariant outputText != null;

/*@ assignable outputText;
ensures outputText.equals(
\old(outputText) + s); */
public void print(String s);
}

Figure 3: The specification and code for the inter-
face NoRep, demonstrating a model variable with no
representation.

reason about its value at points within the body.?

6.4.4 Unmodified model variables

There is a special case of using model variables that allows
a simplification in their translation. If a model variable is not
implicitly or explicitly mentioned in a method’s assignable
clauses®, then its value may not change during the course of
the body of the method. Thus for that method’s body and
the checking of its pre- and post-conditions, the model vari-
able may be treated as a constant. The value of the model
variable can be determined or constrained by the value of
its representation evaluated in the pre-state (or any state)
of the method.

6.5 Exceptional behavior

Constructor calls in annotations have the same problems
with exceptional behavior as do method calls and they can
be handled in the same way using the conventional specifica-
tions. However, quantified expressions and model variables
both utilize expressions that may throw exceptions and nei-
ther have the syntax that method declarations have to spec-
ify the conditions under which exceptional behavior may or
may not happen. How to handle exceptional behavior in
these cases remains an unresearched question.

7. FUTURE WORK:IMMUTABLE VALUES

The complication of introducing state constants as addi-
tional arguments is a result of the underlying logic using
uninterpreted values for reference quantities in the program-
ming language. Since these reference values refer to mutable
objects, one must retain a state value to indicate which state
of the object is meant. If all of the arguments were primi-
tive type values such as integers and booleans, then a state
value would not be needed. These values of non-reference
types are immutable: if two values compare equal, they will
always have the same properties in any program state.

Some reference types are also immutable. For example,
values of java.lang.String that compare equal (with ==)
will always have identical properties even in future program
states. One requirement for the values of a type to be im-
mutable is that no method of the type modify the internal
state of the object; this condition is assured to hold if all
methods of the type and any subtype are pure. However, it

3JML’s in clause, not discussed here, does provide some
information on which other fields of the class contribute to
the value of a model variable and consequently at which
program points the value of a model variable might change.

4including not specified by a JML datagroup

is also necessary for immutability that the internal represen-
tation not contain mutable objects and that the representa-
tion not be exposed in a way that the internal state could
be modified by some external means.

Reasoning with immutable objects is potentially simpler
and more efficient than with typical mutable objects. JML
includes a library of classes representing mathematical con-
cepts useful in specifying classes [15]; they are heavily used
in the specification of JML code and sample classes and in
JML’s specifications of Java classes. Checking these spec-
ifications might be more straightforward if it could be es-
tablished that instances of these classes are immutable. For
this to be possible, we need a set of sufficient conditions
for immutability that can be statically checked, a proof of
soundness regarding immutability, and a demonstration by
a working implementation of the utility of immutable classes
in program verification.

8. CONCLUSIONS

There are by now several tools that statically check spec-
ifications against source code by logical reasoning. Java is a
common but not the exclusive source language. The target
logics and the accompanying provers vary widely: for exam-
ple, Krakatoa [17] uses the Coq proof assistant, Jive [18] and
LOOP [10, 12] use PVS [20], KeY [2] uses OCL and its own
prover, and JACK [4] interfaces with Atelier B, Simplify,
Coq and PVS.

It is also typical to carefully specify the mapping of the
semantics of the source language into the target logic. How-
ever, we know of no published treatment describing the map-
ping of the specification language, particularly of method
calls, into logical assertions. The LOOP tool has a com-
prehensive representation of Java’s memory model and the
program translation and all work in PV'S focuses directly on
this model. The LOOP tool permits one to specify and rea-
son about specifications that use pure methods. To do so,
one either uses the specifications alone, in a manner simi-
lar to that which is described in this paper, or one uses the
implementations of the methods and symbolically executes
them within PVS. The latter approach is implied, for ex-
ample, in [11], though it notes that the semantics of method
invocations in specifications is still unclear. Similary, Kraka-
toa defines all logical predicates in the context of a global
heap; it also introduces a new assumption to encapsulate the
behavior of pure methods. KeY allows simple query func-
tions that do not cause exceptional behavior.

Though there are similar aspects among these approaches,
the solution used by ESC/Java2 for translating method calls
demonstrates a straightforward translation in the context
of a general purpose first-order logic and prover. In doing
so it maintains the design philosophy and usefulness of the
original ESC/Java tool, while adding the capability of using
method calls in annotations. The discussion above also illus-
trates the complexities of handling potentially non-normally
terminating functions in a specification language. It appears
that the tools above that handle method calls all implicitly
use the implicit specification of exceptions of section 5.2.
ESC/Java2 has been successfully using this approach in its
recent alpha releases and is in the early stages of experimen-
tation with the preferred explicit specifications.
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APPENDIX
A. AN EXAMPLE

This section shows an example translation of some sim-
ple code contrived to show the translation concisely. The
guarded commands of Fig. 4 are a subset of the commands
generated by the translation of the method m in the code
of Fig. 5. Though the guarded commands are shown in the
internal language used within ESC/Java, the outlines of the
translation are apparent.

e The ASSUME statement in line (2) states the assump-
tion that the precondition in line A of Fig. 5 holds. Note
the function form used to represent the call of Trans.p:
it has the unique name Trans.p.7.2 and it contains a
state constant, this parameter, and the actual argu-
ments of the call. (The 1blneg expression simply gives
a label to a predicate for use in error messages.)
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1)

2)

3)

4)

5)
6)

7

8)

9)

10) ASSUME (\forall anytype brokenObj<36>,

12) ASSUME (\forall anytype broken0bj<37>,

ASSUME

(\forall anytype brokenObj, c,

s; boolAnd(boolOr(select(b:5.10, brokenObj),

boolEq(Trans.p.7.2(state, brokenObj, c, s), integralEQ(select(z:3.15, c), 1))),

is(Trans.p.7.2(state, brokenObj, c, s), \type(boolean))));

s<1>; boolAnd(boolOr(select(b:5.10, brokenObj<34>),

s<2>; boolAnd(boolOr(select(b:18.4, brokenObj<35>),

boolEq(Trans.p.7.2(state:18.6, broken0bj<35>, c<2>, s<2>), integralEQ(select(z:3.15, c<2>), 1))),

ASSUME (\lblneg Pre:0.13.6 Trans.p.7.2(state, this, c:16.18, "A"));
ASSUME (\forall anytype brokenObj<34>, c<1>,
boolEq(Trans.p.7.2(state, brokenObj<34>, c<1>, s<1>), integralEQ(select(z:3.15, c<1>), 1))),
is(Trans.p.7.2(state, brokenObj<34>, c<1>, s<1>), \type(boolean))));
ASSERT (\1lblneg Assert@17.8 Trans.p.7.2(state, this, c:16.18, "B"));
ASSUME anyEQ(RES-18.8:18.8, Trans.p.7.2(state, this, c:16.18, "Q"));
ASSUME boolImplies(anyEQ(EC-18.8:18.8, ecReturn), boolOr(select(b:5.10, this),
boolEq(RES-18.8:18.8, integralEQ(select(z:3.15, c:16.18), 1))));
ASSUME anyEQ(b:18.4, store(b:5.10, this, RES-18.8:18.8));
ASSUME (\forall anytype brokenObj<35>, c<2>,
is(Trans.p.7.2(state:18.6, broken0bj<35>, c<2>, s<2>), \type(boolean))));
ASSERT (\1blneg Assert©19.8 boolAnd(Trans.p.7.2(state:18.6, this, c:16.18, "C"),

Trans.p.7.2(state:18.6, this, c:16.18, "D")));

c<3>,

s<3>; boolAnd(boolOr(select(b:18.4, brokenObj<36>),

boolEq(Trans.p.7.2(state-20.8:20.8, brokenObj<36>, c<3>, s<3>), integralEQ(select(z:3.15, c<3>), 1))),
is(Trans.p.7.2(state-20.8:20.8, brokenObj<36>, c<3>, s<3>), \type(boolean))));
11) ASSERT (\lblneg Assert@21.8 Trans.p.7.2(state-20.8:20.8, this, RES:20.8, "E"))

c<4>,

s<4>; boolAnd(boolOr(select(b:18.4, broken0bj<37>),

boolEq(Trans.p.7.2(state-20.8:20.8, brokenObj<37>, c<4>, s<4>), integralEQ(select(z:3.15, c<4>), 1))),
is(Trans.p.7.2(state-20.8:20.8, brokenObj<37>, c<4>, s<4>), \type(boolean))));

13) ASSERT (\lblneg Post:15.6022.2 boolImplies(
boolAnd (anyEQ(ecReturn, ecReturn), Trans.p.7.2(state@pre, this, c:16.18, "A")),

Trans.p.7.2(state-20.8:20.8, this, c:16.18, "Z")))

Figure 4: A subset of the guarded commands generated from the translation of the code in Fig. 5.

public class Trans {
public static class C {
public int z;

}

}

boolean b;

//@ diverges false;

//@ ensures b || \result == (c.z == 1);
//@ signals (Exception) false;
//@ pure
public boolean p(C c, String s);
//@ requires p(c,"A"); // A
//@ modifies b;
//@ ensures p(c,"Z"); // Z
public void m(C ¢) {
//@ assert p(c,"B"); // B
b = p(c,"Q"); // Q
//@ assert p(c,"C") && p(c,"D"); // C
¢ = new CQO;
//@ assert p(c,"E"); // E
}

Figure 5: A somewhat contrived example to illus-
trate the translations of method calls.

e The assumption about the value of this call of Trans.p.7.2
is provided in the ASSUME statement in line (1). It

is quantified over the object and the two formal argu-
ments of the method call. It makes the assumption that
either b is true or the returned result is equivalent to
whether the z field of the object z.13.15 has the value
1 ; it also assumes that the type of the result is boolean.

The same state constant is used in lines (1) and (2).

The ASSERT at line (4) is the translation of the assert
statement at line B.

The ASSUME at line (3) is the assumption associated
with line (4) for the call of Trans.p in the assert state-
ment at line B. There has been no change of state as
yet, so the same state constant is used. In fact, this
ASSUME is redundant with that in line (1) and could
be omitted by an appropriate optimization.

The translation of line Q generates lines 5-7. Line
(5) shows the assumption that equates the value of
the function term Trans.p.7.2 to a temporary variable
(RES-18.8:18.8), which is the result of the method call
within the program; in line (6) the method specifica-
tions are applied to that variable and in line (7) it is
used to create the value for the new logical variable for
b. The Java assignment statement also causes a state
change.

Lines (8) and (9) are the translation of the assert
statement of line C. Note that both translations use
the same, new state value as well as the new value of b.

Lines (10) and (11) are the translation of the assert
statement of line E. There has been another state change
and a new variable representing ¢ (namely RES:20.8).

Finally, lines (12) and (13) represent the postcondi-
tion. Per JML’s semantics, it uses the value of b in
the post-state, but the value of the formal argument c
from the pre-state. In line (13), the precondition is eval-
uated with the pre-state state constant and the post-
condition with the post-state state constant (state@pre
and state are later equated).



