
The Java Modeling Language (Part 1)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.uni-linz.ac.at

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 1/30

Overview

Since 1999 by Gary T. Leavens et al. (Iowa State University).

www.jmlspecs.org

A behavioral interface specification language.

Syntactic interface and visible behavior of a Java module
(interface/class).
Tradition of VDM, Eiffel, Larch/C++.

Fully embedded into the Java language.

Java declaration syntax and (extended) expression syntax.
Java types, name spaces, privacy levels.

JML annotations disguised as Java comments.

//@ . . .
/*@ . . .
@ . . . @*/

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/30

1. Basic JML

2. JML Tools

3. More Realistic JML

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/30

Basic JML

JML as required for the basic Hoare calculus.

Assertions.

assume, assert.

Loop assertions.

loop invariant, decreases.

Method contracts.

requires, ensures.

The JML expression language.

\forall, \exists, . . .

Specifying simple procedural programs.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/30

Assertions

Definition:

An assertion is a command that specifies a property which
should always hold when execution reaches the assertion.

JML: two kinds of assertions.

assert P : P needs verification.
assume P : P can be assumed.

Makes a difference for reasoning tools.
A runtime checker must test both kinds of assertions.

//@ assert n != 0;

int i = 2*(m/n);

//@ assume i == 2*(m/n);

Low-level specifications.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 5/30

Loop Assertions

int i = n;

int s = 0;

//@ loop_invariant i+s == n;

//@ decreases i;

while (i >= 0)

{

i = i-1;

s = s+1;

}

loop invariant specifies a loop invariant, i.e. a property that is
true before and after each iteration of the loop.

decreases specifies a termination term, i.e. an integer term that
decreases in every iteration but does not become negative.

Useful for reasoning about loops.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/30

Assertions in Methods

static int isqrt(int y)

{

//@ assume y >= 0;

int r = (int) Math.sqrt(y);

//@ assert r >= 0 && r*r <= y && y < (r+1)*(r+1);

return r;

}

assume specifies a condition P on the pre-state.

Pre-state: the program state before the method call.
The method requires P as the method’s precondition.

assert specifies a condition Q on the post-state.

Post-state: the program state after the method call.
The method ensures Q as the method’s postcondition.

Low-level specification of a method.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 7/30

Design by Contract

Pre- and post-condition define a contract between a method (i.e. its
implementor) and its caller (i.e. the user).

The method (the implementor) may assume the precondition and
must ensure the postcondition.

The caller (the user) must ensure the precondition and may assume
the postcondition.

Any method documentation must describe this contract (otherwise
it is of little use).

The legal use of a method is determined by its contract (not by its
implementation)!

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 8/30

Method Contracts

/*@ requires y >= 0;

@ ensures \result >= 0

@ && \result*\result <= y

@ && y < (\result+1)*(\result+1); @*/

static int isqrt(int y)

{

return (int) Math.sqrt(y);

}

requires specifies the method precondition

May refer to method parameters.

ensures specifies the method postcondition

May refer to method parameters and to result value (\result).

Higher-level specification of a method.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/30

Postcondition and Pre-State

// swap a{i] and a[j], leave rest of array unchanged

/*@ requires

@ a != null &&

@ 0 <= i && i < a.length && 0 <= j && j < a.length;

@ ensures

@ a[i] = \old(a[j]) && a[j] == \old(a[i]) &&

@ (* all a[k] remain unchanged where k != i and k != j *) @*/

static void swap(int[] a, int i, int j)

{ int t = a[i]; a[i] = a[j]; a[j] = t; }

Variable values in postconditions:

x . . . value of x in post-state (after the call).
\old(x) . . . value of x in pre-state (before the call).
\old(E) . . . expression E evaluated with the value of every variable x

in E taken from the pre-state.

Variable values may change by the method call (more on this later).

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/30

The JML Expression Language

Atomic Formulas
Any Java expression of type boolean: a+b == c

Primitive operators and pure program functions (later).

Informal property expression: (* sum of a and b equals c *)

Does not affect truth value of specification.

Connectives: ~P, P && Q, P || Q, P ==> Q, P <== Q, P <==> Q, P <=!=>Q

¬P , P ∧ Q, P ∨ Q, P ⇒ Q, Q ⇒ P , P ⇔ Q,¬(P ⇔ Q).

Universal quantification: (\forall T x; P; Q)

∀x ∈ T : P ⇒ Q

Existential quantification: (\exists T x; P; Q)

∃x ∈ T : P ∧ Q

Strongly typed first-order predicate logic with equality.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 11/30

The JML Expression Language (Contd)

Sum: (\sum T x; P; U)
∑

(x∈T)∧P
U

Product: (\product T x; P; U)
∏

(x∈T)∧P
U

Minimum: (\min T x; P; U)

min{U : x ∈ T ∧ P}

Maximum: (\max T x; P; U)

max{U : x ∈ T ∧ P}

Number: (\num of T x; P; Q)
∑

x∈T :∧P∧Q
1

Set: new JMLObjectSet {T x | P}

{x ∈ T : P}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 12/30

Examples

// sort array a in ascending order

/*@ requires a != null;

@ ensures (* a contains the same elements as before the call *)

@ && (\forall int i; 0 <= i && i < a.length-1; a[i] <= a[i+1]);

@*/

static void sort(int[] a) { ... }

// return index of first occurrence of x in a, -1 if x is not in a

/*@ requires a != null;

@ ensures

@ (\result == -1

@ && (\forall int i: 0 <= i && i < a.length; a[i] != x)) ||

@ (0 <= \result && \result < a.length && a[\result] == x

@ && (\forall int i; 0 <= i && i < \result; a[i] != x));

@*/

static int findFirst(int[] a, int x) { ... }

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/30

Examples

// swap a{i] and a[j], leave rest of array unchanged

/*@ requires

@ a != null &&

@ 0 <= i && i < a.length && 0 <= j && j < a.length;

@ ensures

@ a[i] = \old(a[j]) && a[j] == \old(a[i]) &&

@ (\forall k; 0 <= k && k < a.length && k != i && k != j;

@ a[k] == \old(a[k]));

@*/

static void swap(int[] a, int i, int j) { ... }

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/30

1. Basic JML

2. JML Tools

3. More Realistic JML

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 15/30

JML Tools

Type checker jml

Checks syntactic and type correctness.

Runtime assertion checker compiler jmlc

Generates runtime assertions from (some) JML specifications.

JML skeleton specification generator jmlspec

Generates JML skeleton files from Java source files.

Document generator jmldoc

Generates HTML documentation in the style of javadoc.

Unit testing tool junit

Generates stubs for the JUnit testing environment using specifications
as test conditions.

Simple GUI launched by jml-launcher.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 16/30

JML Eclipse Plugin

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 17/30

1. Basic JML

2. JML Tools

3. More Realistic JML

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 18/30

More Realistic JML

JML for procedural programs with side-effects and errors.

Side-effects

assignable, pure

Exceptions

signals

We also have to deal with the less pleasant aspects of programs.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 19/30

Side Effects

static int q, r, x;

/*@ requires b != 0;

@ assignable q, r;

@ ensures a == b*q + r && sign(r) == sign(a) &&

@ (\forall int r0, int q0; a == b*q0+r0 && sign(r) == sign(a);

@ abs(q) <= abs(q0)) @*/

static void quotRem(int a, int b)

{ q = a/b; r = a%b; }

assignable specifies the variables that method may change.

Default: assignable \everything.

Method might change any visible variable.

Possible: assignable \nothing.

No effect on any variable.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 20/30

Pure Program Functions

static /*@ pure @*/ int sign(int x)

{

if (x == 0)

return 0;

else if (x > 0)

return 1;

else

return -1;

}

static /*@ pure @*/ int abs(int x)

{ if (x >= 0) return x; else return -x; }

Pure program functions may be used in specification expressions.

pure implies assignable \nothing.

JML considers pure program functions as mathematical functions.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 21/30

Exceptions

static int balance;

/*@ assignable balance;

@ ensures \old(balance) >= amount

@ && balance = \old(balance)-amount;

@ signals(DepositException e) \old(balance) < amount

@ && balance == \old(balance); @*/

static void withdraw(int amount) throws DepositException

{

if (balance < amount) raise new DepositException();

balance = balance-amount;

}

This method has two ways to return.
Normal return: the postcondition specified by ensures holds.
Exceptional return: an exception is raised and the postcondition
specified by signals holds.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 22/30

Exceptions

Default: signals(Exception e) true;

Instead of a normal return, method may also raise an exception
without any guarantee for the post-state.
Even if no throws clause is present, runtime exceptions may be raised.

Consider: signals(Exception e) false;

If method returns by an exception, false holds.
Thus the method must not raise an exception (also no runtime
exception).

We also have to take care to specify the exceptional behavior of a
method!

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 23/30

Preconditions versus Exceptions

/*@ requires (\exists int x; ; a == x*b);

@ ensures a == \result*b; @*/

static int exactDivide1(int a, int b) { ... }

/*@ ensures (\exists int x; ; a == x*b) && a == \result*b;

@ signals(DivException e) !(\exists int x; ; a == x*b) @*/

static int exactDivide2(int a, int b) throws DivException { ... }

exactDivide1 has precondition P :⇔ ∃x : a = x · b.
Method must not be called, if P is false.
It is the responsibility of the caller to take care of P .

exactDivide2 has precondition true.

Method may be also called, if P is false.
Method must raise DivException, if P is false.
It is the responsibility of the method to take care of P .

Different contracts!
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 24/30

Lightweight Specifications

This is the contract format we used up to now.

/*@ requires ...;

@ assignable ...;

@ ensures ...;

@ signals ...; @*/

Convenient form for simple specifications.

If some clauses are omitted, their value is unspecified.

So what does a (partially) unspecified contract mean?

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 25/30

Method Underspecification

If not specified otherwise, client should assume weakest possible contract:

requires false;

Method should not be called at all.

assignable \everything;

In its execution, the method may change any visible variable.

ensures true;

If the method returns normally, it does not provide any guarantees for
the post-state.

signals(Exception e) true;

Rather than returning, the method may also throw an arbitrary
exception; in this case, there are no guarantees for the post-state.

Defensive programming: for safety, client should avoid implicit
assumptions.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 26/30

Method Underspecification

If not specified otherwise, method should implement strongest possible
contract:

requires true;

Method might be called in any pre-state.

assignable \nothing;

In its execution, the method must not change any visible variable.

signals(Exception e) false;

Method should not throw any exception.

Defensive programming: for safety, method should satisfy implicit client
assumptions (as far as possible).

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 27/30

Heavyweight Specifications

/*@ public normal_behavior

@ requires ...;

@ assignable ...;

@ ensures ...;

@ also public exceptional_behavior

@ requires ...;

@ assignable ...;

@ signals(...) ...; @*/

A normal behavior and (one or multiple) exceptional behaviors.
Method must implement all behaviors.

Each behavior has a separate precondition.
What must hold, such that method can exhibit this behavior.
If multiple hold, method may exhibit any corresponding behavior.
If none holds, method must not be called.

For each behavior, we can specify
the visibility level (later), the assignable variables, the postcondition.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 28/30

Heavyweight Specification Defaults

If not specified otherwise, we have the following defaults:

requires true;

Method may be called in any state.

assignable \everything;

In its execution, the method may change every visible variable.

ensures true;

After normal return, no guarantees for the post-state.

signals(Exception e) true;

Rather than returning, the method may also throw an arbitrary
exception; then there are no guarantees for the post-state.

Method must not make assumptions on the pre-state, caller must not
make assumptions on the method behavior and on the post-state.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 29/30

Example

static int balance;

/*@ public normal_behavior

@ assignable balance;

@ requires balance >= amount

@ ensures balance = \old(balance)-amount;

@ also public exceptional_behavior

@ requires balance < amount

@ assignable \nothing;

@ signals(DepositException e) true;

@*/

static void withdraw(int amount) throws DepositException

{

if (balance < amount) raise new DepositException();

balance = balance-amount;

}

Clearer separation of normal behavior and exceptional behavior.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 30/30

	Basic JML
	JML Tools
	More Realistic JML

