Modeling Concurrent Systems
Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

A,
N

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 1/44

7\

1. Checking a Client/Server System with SPIN

2. Modeling Concurrent Systems

3. A Model of the Client/Server System

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 2/44

A Client/Server System e

System of one server and two clients.

Three concurrently executing system components.
Server manages a resource.

An object that only one system component may use at any time.
Clients request resource and, having received an answer, use it.

Server ensures that not both clients use resource simultaneously.
Server eventually answers every request.

Set of system requirements.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 3/44

System Implementation

7\

Server:
local given, waiting, sender
begin
given := 0; waiting := 0
loop
sender := receiveRequest()

if sender = given then
if waiting = 0 then

given := 0
else
given := waiting; waiting := 0
sendAnswer (given)
endif
elsif given = O then
given := sender
sendAnswer (given)
else
waiting := sender
endif
endloop

end Server

Wolfgang Schreiner

Client(ident):
param ident
begin
loop

sendRequest ()
receiveAnswer ()
... // critical region
sendRequest ()
endloop
end Client

http:/ /www.risc.uni-linz.ac.at

4/44

' . 74%
Desired System Properties '& {.

Property: mutual exclusion.
At no time, both clients are in critical region.

Critical region: program region after receiving resource from server
and before returning resource to server.

The system shall only reach states, in which mutual exclusion holds.
Property: no starvation.
Always when a client requests the resource, it eventually receives it.

Always when the system reaches a state, in which a client has

requested a resource, it shall later reach a state, in which the client
receives the resource.

Problem: each system component executes its own program.

Multiple program states exist at each moment in time.
Total system state is combination of individual program states.
Not easy to see which system states are possible.

How can we check that the system has the desired properties?

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 5/44

7\

Implementing the System in PROMELA '& {'

/* definition of a constant MESSAGE */
mtype = { MESSAGE };

/* two arrays of channels of size 2,
each channel has a buffer size 1 */

chan request[2] = [1] of { mtype };

chan answer [2] = [1] of { mtype };

/* two global arrays for monitoring
the states of the clients */

bool inC[2] = false;

bool wait[2] = false;

/* the system of three processes */
init
{

run client(1);

run client(2);

run server();

}

/* the client process type */
proctype client(byte id)
{
do :: true ->
request[id-1] ! MESSAGE;

wait[id-1] = true;
answer[id-1] 7 MESSAGE;
wait[id-1] = false;

inC[id-1] = true;
skip; // the critical region
inC[id-1] = false;

request[id-1] ! MESSAGE
od;
}

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 6/44

Implementing the System

7\

in PROMELA '&{'

/* the server process type */
proctype server()

{
/* three variables of two bit each */
unsigned given 12 =0;
unsigned waiting : 2 = 0;
unsigned sender : 2;
do :: true ->

/* receiving the message */

if

:: request[0] ? MESSAGE —>
sender = 1

:: request[1] 7 MESSAGE ->
sender = 2

fi;

/* answering the message */
if

: sender == given ->
if
:: waiting == 0 >
given = 0
:: else —>

given = waiting;
waiting = 0;
answer [given-1] ! MESSAGE
fi;
: given == 0 ->
given = sender;
answer [given-1] ! MESSAGE
11 else
waiting = sender
fi;

od;

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 7/44

Simulating the System Execution in SPIN .E {'

ERCERN

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 8/44

Specifying a System Property in SPIN * *
L}
N4
Formula: ||] (o1 34 2l
Operators: || | < U -» and‘ or | not
Property holds for: 4 All Executions (desired behavior) - No Executions (error behavior)
Notes [file clientServerz-mutex.It]:
|
/
Symbol Definitions:
_* #define cl inG[0]
J #define cf ing[1]==
/
Never Claim: Generate
N Vi —
+ Fornula As Typed: [] |(cl && c2)
* The Never Glaim Beloy Corresponds
* To The Negated Formula I([] (el && £2))
+ {(fornalizing violations of the original)
*
Jomever (s 1([] (el &% cB)) */
Verification Result: valid Run Verification
" warning: for p.o. reduction to be valid the newer claim must be stutter-invariant
I (never claims generated from LTL formulae are stutter-invarian
(Spin Wersion 4 2.2 —— 12 December 2004}
+ Partial order Reduction
Full statespace search for:
never claim +
Help ‘ Clear ‘ Close Save As..
z 7
Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 9/44

Checking the System Property in SPIN

.M.E.
N

(Spin Version 4.2.2 -- 12 December 2004)
+ Partial Order Reduction

Full statespace search for:

never claim +

assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 48 byte, depth reached 477, errors: 0
499 states, stored
395 states, matched
894 transitions (= stored+matched)
0 atomic steps
hash conflicts: O (resolved)

Stats on memory usage (in Megabytes):

0.00user 0.01system 0:00.0lelapsed 83JCPU (Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+737minor)pagefaults Oswaps

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at

10/44

7\

1. Checking a Client/Server System with SPIN

2. Modeling Concurrent Systems

3. A Model of the Client/Server System

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 11/44

7\
System States %

At each moment in time, a system is in a particular state.

A state s : Var — Val
A state s is a mapping of every system variable x to its value s(x).
Typical notation: s=[x=0,y=1,...]=10,1,...].
Var .. .the set of system variables
Program variables, program counters, ...
Val .. .the set of variable values.
The state space State = {s | s : Var — Val}
The state space is the set of possible states.
The system variables can be viewed as the coordinates of this space.
The state space may (or may not) be finite.
If |Var| = n and |Val| = m, then |State| = m".
A word of log, m" bits can represent every state.

A system execution can be described by a path sp — s1 — s, — ... in
the state space.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 12/44

_ 12
Deterministic Systems Ny

In a sequential system, each state typically determines its successor state.

The system is deterministic.
We have a (possibly not total) transition function F on states.
s1 = F(sp) means “s; is the successor of s”.
Given an initial state sp, the execution is thus determined.
so— s1=F(sp) = 2= F(s1) — ...
A deterministic system (model) is a pair {/, F).
A set of initial states | C State
Initial state condition I(s) (& s €/
A transition function F : State "% State.
A run of a deterministic system (/, F) is a (finite or infinite)
sequence sy — S; — ... of states such that
so € I (respectively /(sp)).
sit1 = F(s;) (for all sequence indices i)
If s ends in a state s, then F is not defined on s,,.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 13/44

. I8
Nondeterministic Systems E{

In a concurrent system, each component may change its local state, thus
the successor state is not uniquely determined.

The system is nondeterministic.
We have a transition relation R on states.
R(s0,51) means “s; is a (possible) successor of sp.
Given an initial state sg, the execution is not uniquely determined.
Both sy — 51 — ... and sy — s{ — ... are possible.
A non-deterministic system (model) is a pair (/, R).
A set of initial states (initial state condition) / C State.
A transition relation R C State x State.
A run s of a nondeterministic system (/, R) is a (finite or infinite)
sequence sy—S1—Sp ... of states such that
so € I (respectively /(sp)).
R(si, si+1) (for all sequence indices 7).
If s ends in a state s, then there is no state t such that R(sp, t).

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 14/44

)) 7\
Derived Notions Ny

Successor and predecessor:

State t is a (direct) successor of state s, if R(s, t).
State s is then a predecessor of t.

A finite run s) — ... — s, ends in a state which has no successor.
Reachability:

A state t is reachable, if there exists some run sy—s;—s, — ... such
that t = s; (for some /).
A state t is unreachable, if it is not reachable.

Not all states are reachable (typically most are unreachable).

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 15/44

7\

Reachability Graph N\

The transitions of a system can be visualized by a graph.

So Initial State

Systemrun ~ - _

® . Successor of s,

‘. & ® ® @ @5, Successor of s

The nodes of the graph are the reachable states of the system.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at

16/44

Examples

7\
N’

Wolfgang Schreiner

6 1. Automata

04:00

Fig. 1.1. A model of a watch

of Aes correspond to the possible counter values. Its transitions reflect the
possible actions on the counter. In this example we restrict our operations to
increments (inc) and decrements (dec).

Fig. 1.2. Aes : a modulo 3 counter

B.Berard et al: “Systems and Software Verification”, 2001.

http:/ /www.risc.uni-linz.ac.at

17/44

7\
Examples W

A deterministic system W = (Iy/, Fy) (“watch™).
State := {(h,m) : h € Nog A m € Ngo}.
N,:={ieN:i<n}.
Iw(h,m) = h=0Am=0.
lw = {(h,m) : h=0Am=0} ={(0,0)}.
Fw(h, m) =
if m <59 then (hym—+1)
else if h < 24 then (h+ 1,0)
else (0,0).
A nondeterministic system C = (I, R¢) (modulo 3 “counter”).
State := Nj.
Ic(i) 4 i = 0.
Re(i, ') v inc(i, ') V/ dec(i,).
inc(i,i') &= if i<2theni =i+ 1else i/ =0.
dec(i,i') < if i>0then i/ =i—1else / =2.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 18/44

: 7\
Composing Systems N

Compose n components S; to a concurrent system S.

State space State := Stateg X ... X State,_1.
State; is the state space of component i.
State space is Cartesian product of component state spaces.
Size of state space is product of the sizes of the component spaces.

Example: three counters with state spaces Ny and N3 and Nj.

0,0,0

Fig. 1.9. The states of the product of the three counters

B.Berard et al: “Systems and Software Verification”, 2001.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 19/44

7\
Initial States of Composed System %

What are the initial states / of the composed system?

Set | ==l x...x l,_1.
I; is the set of initial states of component /.
Set of initial states is Cartesian product of the sets of initial states of
the individual components.

Predicate I(sp,...,5n-1) <= lo(so) A ... A lp—1(sn—1).
I; is the initial state condition of component i.
Initial state condition is conjunction of the initial state conditions of
the components on the corresponding projection of the state.

Size of initial state set is the product of the sizes of the initial state sets
of the individual components.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 20/44

7\
Transitions of Composed System .E {°

Which transitions can the composed system perform?
Synchronized composition.
At each step, every component must perform a transition.
R; is the transition relation of component /.
R((s0s- -y Sn-1)s (Shy -1 51 1)) 16
Ro(So, 56) TANAAN R,,,l(s,,,l, S,l,,l).
Asynchronous composition.
At each moment, every component may perform a transition.
At least one component performs a transition.
Multiple simultaneous transitions are possible
With n components, 2" — 1 possibilities of (combined) transitions.
R((s0s- -y Sn1)s (8, -, 5h1)) 16
(Ro(s0,80) A - Asn—1=s5p_1)V

(5s=5h A ARu-1(Sn1,50-1)) V

(Ro(S0,50) A -+ A Ro—1(sn—1, Sp-1))-

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 21/44

7\
Example 4

System of three counters with state space N, each.

Synchronous composition:
[0,0,0] = [1,1,1]

Asynchronous composition:

Fig. 1.10. A few transitions of the product of the three counters

B.Berard et al: “Systems and Software Verification”, 2001.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 22/44

7\

Interleaving Execution Ny

Simplified view of asynchronous execution.

At each moment, only one component performs a transition.

Do not allow simultaneous transition t;|t; of two components i and j.
Transition sequences t;; t; and t;; t; are possible.

All possible interleavings of component transitions are considered.
Nondeterminism is used to simulate concurrency.
Essentially no change of system properties.

With n components, only n possibilities of a transition.
R((S0,51,--ySn—1), (S5 51, - -+, Sh_1)) &
(Ro(s0,85) ANs1=5S] A...Ass_1 =5,

nfl) v
(so =5 ARi(s1,S)) AN ... Aspm1 =5,

)V

(so=spAs1 =5 A... A Ro_1(sn—1,5,_1))-

Interleaving model (respectively a variant of it) suffices in practice.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 23/44

7\
Example A4

System of three counters with state space Ny each.

j@

-

1011

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 24/44

. . . . ME
Digital Circuits N

Synchronous composition of hardware components.

A modulo 8 counter C = (I¢, R¢).

State := Ny x Np x Np. [Y DJ

/C(Vo7 Vi, Vz) S vg=wvi = w=0.

RC((‘/Ov Vi, V2>’ <Véa Vlla V2,>) =
Ro(vo, vg) A

vO
Ri(vo, v1,vi) A
Ra(vo, vi, v2, v3).
Figure 2.1
Ro (Vo, Vé) <= Vé = . Synchronous modulo 8 counter.

Ed d Clarke et al: “Model Checking”, 1999.
Rl(Vo,Vl,Vl/) PN V{:VOGBVI- mun arke et a odel ecking’

Ro(vo, vi,vo,v3) i vs = (g Avi) ® va.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 25/44

78"
Concurrent Software .E {-

Asynchronous composition of software components with shared variables.

P :: b : while true do Il Q :: L : while true do
NCy : wait turn =20 NC; : wait turn =1
CRo : turn:=1 CRy : turn: =0
end end

A mutual exclusion program M = (I, Ry).
State := PC x PC x Ny. // shared variable
Iv(p, q,turn) = p=hhANqg=h.
Rum({p, q, turn),{p’, q’, turn’)) =
(P({p, turn), {p', turn’)) A q" = q) V (Q({q, turn), (q’, turn")) A p" = p).
P({p, turn), (p’, turn’)) : &=
(p=Il Ap = NCoAturn’ = turn) v
(p=NCoAp' =CRogAturn=0)V
(p=CRo AP =lo A turn’ =1).
Qg, turn), (q', turn)) =
(g=h Nqg = NCi A turn’ = turn) v
(g=NCiANg =CRiANturn=1)V
(g=CR1Aq = h Aturn’ =0).

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 26/44

Concurrent Software %

Figure 2.2 .
Rfa\chable states of Kripke structure for mutual exclusion example.

Edmund Clarke et al: “Model Checking”, 1999.

Model guarantees mutual exclusion.
Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 27/44

: 7\
Modeling Commands Ny

Transition relations are typically described in a particular form.

R(s,s') < P(s) As' = F(s).
Precondition P on state in which transition can be performed.
If P(s) holds, then there exists some s’ such that R(s,s’).
Transition function F that determines the successor of s.
F is defined for all states for which s holds:
F : {s € State : P(s)} — State.
Examples:
Assignment: x = e.
R({x,y), (X', ¥y")) i true A (X' = ey =y).
Wait statement: wait P(x,y).
R((x,), (X 1y) 6 PO y) A (X = x Ay = y).
Guarded assignment: P(x,y) — x :=e.
R((x,y), (x',¥")) = P(x,y) AN (X' =eny' =y).

Most programming language commands can be translated into this form.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 28/44

_ o/
Message Passing Systems °§ {°

How to model an asynchronous system without shared variables where
the components communicate/synchronize by exchanging messages?

Given a label set Label = Int U Ext U Ext.
Disjoint sets Int and Ext of internal and external labels.
“Anonymous” label _ € Int.
Complementary label set L:= {/: /€ L}.
A labeled system is a pair (I, R).
Initial state condition | C State x State.
Labeled transition relation R C Label x State x State.

A run of a labeled system (/, R) is a (finite or infinite) sequence

k I
So — s1 — ... of states such that

so € 1.
R(1;, si,si+1) (for all sequence indices 7).
If s ends in a state s, there is no label / and state t s.t. R(/, sp, t).

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 29/44

- : I
Synchronization by Message Passing Ny

Compose a set of n labeled systems (/;, R;) to a system (/, R).

State space State := Stateg X ... X State,_1.
Initial states [:= Iy X ... x I,_1.
I(So, Ceey Snfl) = Io(So) VANIAN /nfl(Snfl).
Transition relation
R(I, (si)ien,, (s})ien,)
(leintAJieN,:
Ri(l,si,s!) ANYk € N\{i} : sk = s,) V
(I=_ A3l €Ext,i €Ny j €N,
Ri(1,si,s!) A Ri(1, s}, sJ’) AVk e N\ {i,j} : sk = s;).
Either a component performs an internal transition or two components
simultaneously perform an external transition with complementary labels.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 30/44

7\
Example N

0 :: loop 1: loop
ao : send(i) bo : j := receive()
a1 : i = receive() Il bi:ji=j+1
a:i=i+1 b, : send(j)
end end

Two labeled systems (ly, Rp) and (h, Ry).

Statey = State; = PC x N, Internal := {A, B}, External := {M, N}.

bip,i) & p=aNieN; h(q,)):& qg= bo.

RO(’? <pvi>v<p/vi,>) =
(I=MAp=aAp =aini’ =i) V
(I=NAp=aAp =aAi"=]j) Vv //ilegall
(I=AAp=aAp =aNi =i+1).

R1(/, <q:.j>7<q/:jl>) =
(I=MAg=boAg =binj =i)V //illegall
(I=BAgq=bAg =bAj=j+1) V
(I=NAg=bAqG =bo N =)

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 31/44

Z8\
Example (Continued) o

Composition of (I, Ro) and (h, Ry) to (I, R).
State = (PC x N) x (PC x N).

I(p,i,q,j) = p=a ANi € NAqg=bg.

R(I{psisa.j), (P, i, q',)")) =
(I=AAN(p=aAp =aAi"=i+)A(@ =qgnj =)V
(I=BA(P =pAi"=i)A(@=biAg =bAj=j+1)) V
(I=_-Ap=aAp =ani=0A(q@=bAqg =biAj =i)V
(I=-ANp=arp =anNi=j)AN(g=bAq =bN]j =J)).

Problem: state relation of each component refers to local variable of
other component (variables are shared).

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 32/44

7\

Example (Revised * *
ple () Ny
0:: loop 1: loop
ao : send(i) bo : j := receive()
ay @ i := receive() Il bi:ji=j+1
a:i=i+1 b, : send(j)
end end

Two labeled systems (ly, Ry) and (h, Ry).

External := {M : k € N} U {Ni : k € N}.
Ro(1, (p, i), {p'.i")) =
(I=MiAp=aAp =aAi"=i)V
(FkeN:I=NeAp=aAp =aAi"=k) V
(I=AAp=aAp =aNi=i+1).
Ru(l,(q.),{d",J")) &
(FkeN: I=McAg=boAg =biAj =k) V
(l=BAg=biAg =boNj=j+1) V
(I=Ning=baAg =boNj =)
Encode message value in label.
33/44

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at

Example (Continued) g?

Composition of (I, Ro) and (h, Ry) to (I, R).
State = (PC x N) x (PC x N).
I(p,i,q,j) = p=a ANi € NAqg=bg.

R(I{p.i,q.0),(p". 1", d',J")) =
(I=AA(p=axAp =aoAi'=i+1)A(d =qgArj =j)V
(I=BA(P =pAi"=i)A(@=biAg =bAj=j+1)) V
(I=_AFkeN:k=iA
(p=aAp =aaAi’"=)A(g=boANqg =bi Nj =k))V
(I=_ AJkeN:k=jA
(p=ariAp =anNi"=k)AN(g=bAqd =b Aj =])).

Logically equivalent to previous definition of transition relation.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 34/44

7\

1. Checking a Client/Server System with SPIN

2. Modeling Concurrent Systems

3. A Model of the Client/Server System

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 35/44

. Y
Basic Idea .E (‘

Asynchronous composition of three components Clienty, Clienty, Server.
Client;: State := PC x Ny x Np.
Three variables pc, request, answer.
pc represents the program counter.
request is the buffer for outgoing requests.
Filled by client, when a request is to be sent to server.
answer is the buffer for incoming answers.
Checked by client, when it waits for an answer from the server.
Server: State := (N3)3 x ({1,2} — Np)2.
Variables given, waiting, sender, rbuffer, sbuffer.
No program counter.
We use the value of sender to check whether server waits for a
request (sender = 0) or answers a request (sender # 0).
Variables given, waiting, sender as in program.
rbuffer(i) is the buffer for incoming requests from client /.
sbuffer(i) is the buffer for outgoing answers to client /.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 36/44

o M Ny,
External Transitions E {

Ext := {REQ1, REQ,, ANS1, ANS,}.
Transition labeled REQ); transmits a request from client i to server.

Enabled when request # 0 in client i.
Effect in client i: request’ = 0.
Effect in server: rbuffer’(i) = 1.

Transition labeled ANS; transmits an answer from server to client i

Enabled when sbuffer(i) # 0
Effect in server: sbuffer’(i) = 0.
Effect in client i: answer’ = 1.

The external transitions correspond to system-level actions of the
communication subsystem (rather than to the user-level actions of the
client/server program).

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 37/44

The Client

7\

Client system C; = (IC;, RC;).
State := PC x N x Nj.
Int :={R;,S;, C; }.

IC;(pc, request, answer) <
pc = R A request = 0 N\ answer = 0.
RC;(l,{pc, request, answer),
(pc’, request’, answer')) <
(I = Ri A pc = R A request =0 A
pc’ = S A request’ = 1 A answer’ = answer) V
(I =Si Apc =S5 A answer #0A
pc’ = C A request’ = request A answer’ = 0) V
(I = Ci A pc = C A request =0 A
pc’ = R A request’ = 1 A answer’ = answer) V

(I = REQ; N request # 0 A

pc’ = pc A request’ = 0 A answer’ = answer) V
(I = ANS; A

pc’ = pc A request’ = request A answer’ = 1).

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at

Client(ident):
param ident
begin
loop

R: sendRequest()
S: receiveAnswer()
C: // critical region

sendRequest ()

endloop
end Client

38/44

The Server 'g F‘

Server system S = (IS, RS). Server: N
local given, waiting, sender
State := (N3)® x ({1,2} — N)2.

begin
Int := {D].7 D2, F, A1, A2, W} given := 0; waiting := 0
loop
I1S(given, waiting, sender , rbuffer, sbuffer) : & D: sender := receiveRequest()

given = waiting = sender = 0 A

if sender = given then
rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.

if waiting = O then

F: given := 0
RS(1, {given, waiting , sender, rbuffer, sbuffer), else
(given’, waiting’, sender’, rbuffer’, sbuffer’)) 1< Al: given := waiting;
Ji e {1,2}: waiting := 0
(I = Dj A sender = 0 A rbuffer(i) #0 A sendAnsver (given)
sender’ = i A rbuffer’ (i) = 0 A endif
U(given, waiting, sbuffer) A elsif given = O then
Vj € {1,2)\{i} : Uj(rbuffer)) v A2: given := sender
. sendAnswer (given)
else
U(xt, .., xn) i X{ = X1 A ... A X, = Xp. W waiting := sender
Ui(xa, -, xn) 19 x((J) = xa() A Axp() = xa(f) endif
endloop

end Server
Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 39/44

The Server (Contd) .g F.

Server:
local given, waiting, sender

(I = F A sender # 0 A sender = given A waiting = 0 A bng..n L.

given’ = 0 A sender’ =0 A given := 0; waiting := 0

U(waiting, rbuffer, sbuffer)) V Loop .

D: sender := receiveRequest()

(I = Al A sender # 0 A sbuffer(waiting) =0 A if .:ende.:z - givgnt;clhen

sender = given A waiting # 0 A E- 1L owal m% (_) en

given’ = waiting A waiting’ = 0 A ’ 1g1ven -

sbuffer’ (waiting) = 1 A sender’ =0 A else .

U(rbuffer) A Al: given := waiting;

H it iti =0

vje{1,2 ting} : Uj(sbuffer)) v walting

j € {1,21\{waiting} : U;(sbuffer)) sendAnswer (given)
(I = A2 A sender # 0 A sbuffer(sender) = 0 A ler}?lf. - 0 th

sender # given A given = 0 A eisil glven = en

given’ — sender A A2: given := sender

sbuffer’ (sender) = 1 A sender’ = 0 A lsendAnswer (given)

U(waiting, rbuffer) A W © Se.t. L d

Vj € {1,2}\{sender} : U;(sbuffer)) v P walting := sender

endif

o endloop

end Server
Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 40/44

The Server (Contd’2) .g F.

Server:
local given, waiting, sender
| = W A sender # 0 A sender # given A given # 0 A\ bng..n L.
(waiting’ := senﬁer A sender/;li 0A 7 given := 0; waiting := 0
U(given, rbuffer, sbuffer)) v Loop .
D: sender := receiveRequest()
if sender = given then
Jie{1,2}: if waiting = 0 then
F: given := 0
(I = REQ; A rbuffer’ (i) = 1 A else o
U(given, waiting, sender, sbuffer) A Al: given := waiting;
Vj € {1,20\{i} : Uj(rbuffer)) v waiting := 0
sendAnswer (given)
(I = ANS; A sbuffer (i) # 0 A endif
sbuffer’ (i) = 0 A els:.Lf given = 0 then
U(given, waiting, sender, rbuffer) A A2: given := sem.ier
Vj € {1,20\{i} : Uj(sbuffer)). sendAnswer (given)
else
W: waiting := sender
endif
endloop

end Server
Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 41/44

ZaY

Communication Channels .E {'
[]

We also model the communication medium between components.

SEND - ECE'VEM

Bounded channel Channel; j = (ICH, RCH).

Transfers message from component with address i to component ;.
May hold at most N messages at a time (for some N).

State := (Value).

Sequence of values of type Value.

Ext := {SEND; j(m) : m € Value} U {RECEIVE; j(m) : m € Value}.
By SEND; j(m), channel receives from sender i a message m destined
for receiver j; by RECEIVE| j(m), channel forwards that message.

ICH(queue) :& queue = ().

RCH(I, queue, queue’) &

di € Address, j € Address, m € Value :
(I = SEND; j(m) A |queue| < N A queue’ = queue o (m)) V
(I = RECEIVE, j(m) A |queue| > 0 A queue = (m) o queue').

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 42/44

07\
Client/Server Example with Channels N

Server receives address 0.
Label REQ; is renamed to RECEIVE; o(R).
Label ANS; is renamed to SEND ;(A).

Client i receives address i (i € {1,2}).

Label REQ; is renamed to SEND; o(R).
Label ANS; is renamed to RECEIVE i(A).

System is composed of seven components:

Server, Clienty, Clients. - .
requ requi
Channe/o,l, Channe/Lo. @ q @@
answer answer
Channely >, Channel .

Also channels are active system components.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 43/44

.M.E.
Summary E.{

We have now seen a model of a client/server system (as used by SPIN).

A system is described by
its (finite or infinite) state space,
the initial state condition (set of input states),
the transition relation on states.
State space of composed system is product of component spaces.
Variable shared among components occurs only once in product.
System composition can be
synchronous: conjunction of individual transition relations.
Suitable for digital hardware.
asynchronous: disjunction of relations.
Interleaving model: each relation conjoins the transition relation of
one component with the identity relations of all other components.
Suitable for concurrent software.
Labels may be introduced for synchronization/communication.
Simultaneous transition of two components.
Label may describe value to be communicated.

Wolfgang Schreiner http: //www.risc.uni-linz.ac.at 44/44

	Checking a Client/Server System with SPIN
	Modeling Concurrent Systems
	A Model of the Client/Server System

