Term Algebras

Wolfgang Schreiner Wolfgang, Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

1/11

Term Algebras

- **Example:** NAT = $(\{nat\}, \{0 : \rightarrow nat, Succ : nat \rightarrow nat\})$.
 - $T(NAT)(nat) = \{0, Succ(0), Succ(Succ(0)), \ldots\}.$
 - T(NAT)(0) = 0.
 - T(NAT)(Succ)(t) = Succ(t), for every $t \in T(NAT)(nat)$.
- Term value $T(\Sigma)(t) = t$, for every ground term $t \in T(\Sigma)$.
 - A ground term denotes itself.
- $T(\Sigma)$ is freely generated.
 - Generated: every carrier is denoted by itself.
 - Free: two different ground terms denote two different carriers.

In a term algebra, a ground term and its interpretation coincide.

Term Algebra

Take signature $\Sigma = (S, \Omega)$.

- Term algebra $T(\Sigma)$:
 - Σ -algebra whose carriers are Σ -terms.
 - $T(\Sigma)(s) = T_{\Sigma,s}$, for every $s \in S$.
 - $T(\Sigma)(\omega) = n$
 - for every $\omega = (n : \rightarrow s) \in \Omega$.
 - $T(\Sigma)(\omega)(t_1,\ldots,t_k)=n(t_1,\ldots,t_k)$
 - for every $\omega = (n: s_1 \times \ldots \times s_k \to s) \in \Omega$, $t_i \in T(\Sigma)(s_i)$.

 $T(\Sigma)$ is the algebra of (well-typed) ground terms of Σ .

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

2/11

Initiality

Take signature Σ , class $\mathcal{C} \subseteq Alg(\Sigma)$ of Σ -algebras, and Σ -algebra $A \in \mathcal{C}$.

- \blacksquare A is initial in C if
 - for every $B \in \mathcal{C}$, there exists exactly one homomorphism $h : A \to B$.
 - \blacksquare A distinguishes most among all algebras of \mathcal{C} .
- Initial algebras are unique up to isomorphism:
 - If A is initial in C, then B is initial in C iff $A \simeq B$.
- Theorem: $T(\Sigma)$ is initial in $Alg(\Sigma)$.
 - For every $A \in Alg(\Sigma)$, there exists the unique evaluation homomorphism.

$$h: T(\Sigma) \to A$$

h(t) := A(t), for every ground term $t \in T_{\Sigma}$.

The term algebra $T(\Sigma)$ distinguish most among all Σ -algebras.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/11 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/11

Congruence Relation

Take signature $\Sigma = (S, \Omega)$, Σ -algebra A.

- Congruence relation $Q = (Q_s)_{s \in S}$ on A:
 - Q_s is an equivalence relation on A(s) for every $s \in S$.
 - $(a_1, a_1') \in Q_{s_1} \wedge \ldots \wedge (a_k, a_k') \in Q_{s_k} \Rightarrow$ $(A(\omega)(a_1,\ldots,a_k),A(\omega)(a'_1,\ldots,a'_k)) \in Q_s$
 - for every $w = (n : s_1 \times ... \times s_k \rightarrow s) \in \Omega$, and
 - for every $a_1, a_1' \in A(s_1), \ldots, a_k, a_k' \in A(s_k)$.
 - Equivalent arguments yield equivalent results.

A congruence relation preserves equivalence across function applications.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

5/11

Quotient Algebra

Take signature $\Sigma = (S, \Omega)$, Σ -algebra A, congruence relation Q on A.

- **Quotient (algebra)** A/Q of A by Q:
 - Σ-algebra whose carriers are congruence classes.
 - $[a]_Q = \{a' : (a, a') \in Q\}.$
 - Class of a with respect to congruence relation Q.
 - $A/_{Q}(s) = \{[a]_{Q_{s}} | a \in A(s)\}$
 - for every $s \in S$.
 - $A/Q(\omega) = [A(\omega)]_Q$
 - for every $\omega = (n : \rightarrow s) \in \Omega$.
 - $A/_Q(\omega)([a_1]_{Q_{s_1}},\ldots,[a_k]_{Q_{s_k}}) = [A(\omega)(a_1,\ldots,a_k)]_{Q_s}$
 - for every $\omega = (n : s_1 \times \ldots \times s_k \to s) \in \Omega$.

Congruent elements of A are combined to a single element of A/Q.

Example

■ BOOL-algebra *D*:

$$D(bool) = \mathbb{N}$$

$$D(\neg)(n) = \begin{cases} n+1, & \text{if } n \text{ is even} \\ n-1, & \text{otherwise} \end{cases}$$

 $D(\wedge)(n,m) = n * m$

Q is a congruence relation on D.

 $(m,n) \in Q_{bool} : \Leftrightarrow m+n \text{ is even.}$

- Take $\omega = \neg : bool \rightarrow bool$:
 - Take $n, n' \in D(bool)$ with $(n, n') \in Q_{bool}$.
 - We have to show $(D(\neg)(n), D(\neg)(n')) \in Q_{bod}$.
 - n + n' is even. Thus n and n' are either both even or both odd.
 - Case 1: we have to show $(n+1, n'+1) \in Q_{bool}$, i.e., (n+1) + (n'+1) = (n+n') + 2 is even. ...
 - Case 2: we have to show $(n-1, n'-1) \in Q_{bod}$, i.e., (n-1) + (n-1) = (n+n') - 2 is even. ...
- Take $\omega = \wedge : bool \times bool \rightarrow bool$:

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

6/11

Example

- \blacksquare BOOL-algebra D and congruence relation Q on D (as before). $(m,n) \in Q_{bool} : \Leftrightarrow m+n \text{ is even.}$
- Quotient algebra D/Q:

$$[0] = \{n \in \mathbb{N} \mid 0 + n \text{ is even}\} = \{n \in \mathbb{N} \mid n \text{ is even}\}$$
$$[1] = \{n \in \mathbb{N} \mid 1 + n \text{ is even}\} = \{n \in \mathbb{N} \mid n \text{ is odd}\}$$

- $(D/Q)(bool) = \{[0], [1]\}.$ $(D/Q)(\neg)(n) = \begin{cases} [1] & \text{if } n = [0] \\ [0] & \text{if } n = [1] \end{cases}$
- $(D/Q)(\land)(n,m) = \begin{cases} [1] & \text{if } n = m = [1] \\ [0] & \text{else} \end{cases}$
- $(D/\alpha) \simeq C$ $C(bool) = \{0, 1\}$ C(True) = 1C(False) = 0 $C(\neg)(n) = 1 - n$ $C(\wedge)(n,m) = n * m$

Wolfgang Schreiner

Quotient Term Algebra

Take signature $\Sigma = (S, \Omega)$ and class of algebras $C \subseteq Alg(\Sigma)$.

- Congruence relation $\equiv_{\mathcal{C}}$ of \mathcal{C} :
 - $\equiv_{\mathcal{C}} := (\equiv_{\mathcal{C},s})_{s\in S}.$
 - $= \equiv_{\mathcal{C},s} := \{ (t,u) \in T_{\Sigma,s} \times T_{\Sigma,s} \mid \forall A \in \mathcal{C} : A(t) = A(u) \}.$
 - All ground terms are congruent that have the same value in all algebras of \mathcal{C} .
- **Quotient Term Algebra** $T(\Sigma, C)$ of C:
 - $T(\Sigma, \mathcal{C}) := T(\Sigma)/_{\equiv_{\mathcal{C}}}$
 - ullet Σ -algebra whose carrier are congruence classes of ground terms of Σ .
- Theorem: If $T(\Sigma, C) \in C$, then $T(\Sigma, C)$ is initial in C.
 - For every $A \in \mathcal{C}$, there exists the unique evaluation homomorphism:

$$h: T(\Sigma, C) \to A$$

 $h([t]) := A(t)$, for every ground term $t \in T_{\Sigma}$.

 $T(\Sigma, \mathcal{C})$ relates similarly to \mathcal{C} as $T(\Sigma)$ relates to $Alg(\Sigma)$.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

9/11

11/11

Quotient Term Algebra of a Set of Formulas

Take logic L, signature Σ , set of formulas $\Phi \subseteq L(\Sigma)$.

- **Quotient term algebra** $T(\Sigma, \Phi)$ of Φ :
 - $T(\Sigma, \Phi) := T(\Sigma, Mod_{\Sigma}(\Phi)) \ (= T(\Sigma)/_{\equiv_{Mod_{\Sigma}(\Phi)}}).$
 - $Mod_{\Sigma}(\Phi) = \{A \in Alg(\Sigma) \mid A \text{ is a model of } \Phi\}.$
 - $\equiv_{Mod_{\Sigma}(\Phi),s} = \{(t,u) \in T_{\Sigma,s} \times T_{\Sigma,s} \mid \forall A \in Mod_{\Sigma}(\Phi) : A(t) = A(u)\}.$
 - ullet Σ -algebra whose carriers are classes of those terms that have the same value in all models of Φ .
- Theorem: If $T(\Sigma, \Phi)$ is model of Φ , $T(\Sigma, \Phi)$ is initial in $Mod_{\Sigma}(\Phi)$.
 - For every model A of Φ , there exists the unique evaluation homomorphism:

$$h: T(\Sigma, \Phi) \to A$$

 $h([t]) := A(t)$, for every ground term $t \in T_{\Sigma}$.

Basis of initial specification semantics.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

Examples

- $T(\Sigma, Alg(\Sigma)) \simeq T(\Sigma)$.
 - Carriers of $T(\Sigma, Alg(\Sigma))$ are singletons $[t] = \{t\}$ for every ground term $t \in T_{\Sigma}$.
- $^{\blacksquare}$ *T*(Σ, {*A*}) ≃ *A*, for every Σ-algebra *A*.
 - Carriers of $T(\Sigma, \{A\})$ are classes of all those terms that denote the same carrier in A.
- Let B be the "classical" NATBOOL-algebra.
 - Terms *True* and ¬*False* belong to the same carrier of $T(\Sigma, \{B\})$.
 - Terms 0 and 0+0 belong to the same carrier of $T(\Sigma, \{B\})$.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/11