Distributed Memory Programming

Distributed Memory Programming

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

Distributed Memory Programming

SIMD Mesh Matrix Multiplication

Single Instruction, Multiple Data

o n2 Processors,

e 3n time.

Algorithm: see slide.

Wolfgang Schreiner

Distributed Memory Programming

SIMD Mesh Matrix Multiplication

1. Precondition array

e Shift row ¢ by ¢ — 1 elements west,

e Shift column j by 5 — 1 elements north.

2. Multiply and add
On processor (i, j):

C=Ya;. * by,
” vk T VEkg
e Inverted dimensions
— Matrix | 7, — 7.

— Processor array | iyproc, — ixproc.

e 1 shift and n arithmetic operations.

o n? Processors.

Maspar program: see slide.

Wolfgang Schreiner

Distributed Memory Programming

SIMD Cube Matrix Multiplication

Cube of d° processors

yoo(’
«

20.4dAu

|dea

e Map A(1,j) to all P(j,i,k)
e Map B(Z,]) to all P(i, k,])

-

A

C

4

S

Wolfgang Schreiner

Distributed Memory Programming

SIMD Cube Matrix Multiplication

Multiplication and Addition

e Each processor computes single product
Piik t Cijk = a;f; * b

e Bars along x-directions are added

Poij : Cij =%k Cijk

B(k.j)

C(i.j)
A k)

Wolfgang Schreiner

Distributed Memory Programming

SIMD Cube Matrix Multiplication

Maspar Program

int A[N,N], B[N,N], C[N,N];
plural int a, b, c;

a = Aliyproc, ixproc];
b = B[ixproc, izproc];
c = axb;

for (i = 0; i < N-1; i++)
if (ixproc > 0)
c = xnetE[1].c
else
c += xnetE[1] .c;

if (ixproc == 0) Cliyproc, izproc] = c;

o O(nS) Processors,

e O(n) time.

Wolfgang Schreiner

Distributed Memory Programming

SIMD Cube Matrix Multiplication

Tree-like summation

plural x, d;

X = 1Xproc;
d =1;
while (d < N) {
if (x % 2 '= 0) break;
c += xnetE[d] .c;
X /= 2;
d x= 2;
}

if (ixproc == 0) Cliyproc, izproc] = c;
e O(logn) time
e O(n?) processors

Long-distance communication required!

Wolfgang Schreiner

Distributed Memory Programming

SIMD Hypercube Mat. Multiplication

101 111
1 01 11 00¥[0%
10p |110
. /
_ 0 00 10 000 010
d=0 d=1 d=2 d=3
1010
0010
d=4

e d-dimensional hypercube = processors in-

dexed with d bits.

e p1 and po differ in ¢ bits = shortest path

between py and po has length 7.

Wolfgang Schreiner

Distributed Memory Programming

SIMD Hypercube Matrix Multiplica-
tion

Mapping of cube with dimension n to hyper-
cube with dimension d.

e Hypercube of n® = 2% processors = d =
3s (for some s).

® 64 processors = n =4,d =06,s = 2.
Hypercube drds dsds dydy
Cube r Yy oz

e Embedding algorithm

— Cube indices in binary form (s bits each)

— Concatenate indices (3s = d bits)

e Neighbor processors in cube remain neigh-
bors in hypercube.

e Any cube algorithm can be executed with
same efficiency on hypercube.

Wolfgang Schreiner 8

Distributed Memory Programming

SIMD Hypercube Matrix Multiplica-
tion

Tree summation in hypercube.
Processors 000 001 010 011 100 101 110 111

Step 1 Yo Sy T{ S To S9 T3 83
Step 2 o S0 r1 S1
Step 3 o So

e Each processor receives value from neigh-
boring processors only.

e Only short-distance communication is re-
quired.

Cube algorithm can be more efficient on hy-
percube!

Wolfgang Schreiner 9

Distributed Memory Programming

Row/Column-Oriented Matrix Multi-
plication

'YYYW!

A | B ®

1. Load A; on every processor P;.
2. For all P; do:

for j=0 to N-1
Receive Bj from root
Cz'j = Az' X Bj
3. Collect C

Broadcasting of each B; = Step 2 takes
O(N log N) time.

Wolfgang Schreiner 10

Distributed Memory Programming

Ring Algorithm
See Quinn, Figure 7-15.
e Change order of multiplication by

e Using a ring of processors.

1. Load A; and B; on every processor P;.

2. For all P; do:
p = (i+1) mod N
j=i
for k=0 to N-1 do
Cz'j = A'é * Bj
j = (j+1) mod N
Receive B, from B

3. Collect C;

Point-to-point communication = Step 2

takes O(N) time.

Wolfgang Schreiner

11

Distributed Memory Programming

Hypercube Algorithm

Problem: How to embed ring into hypercube?
e Simple solution H (i) = ¢:

— Ring processor i is mapped to hypercube processor H (7).

— Massive non-neighbor communication!
e How to preserve neighbor-to-neighbor
communication? (see Quinn, Figure 5—13)
e Requirements for H(7):

— H must be a 1-to-1 mapping.
— H(i) and H (i + 1) must differ in 1 bit.
— H(0) and H(N — 1) must differ in 1 bit.

Can we construct such a function H?

Wolfgang Schreiner 12

Distributed Memory Programming

Ring Successor

Assume H is given.

e Given: hypercube processor number ;

e Wanted: “ring successor” S(7)
- o, fi—N—1
S(i) = H(H~'i) 4 1), otherwise

Same technique for embedding a 2-D mesh
into an hypercube (see Quinn, Figure 5-14).

Wolfgang Schreiner 13

Distributed Memory Programming

Gray Codes

Recursive construction.

e 1-bit Gray code (G4

[G1(2>
0]0
11
e n-bit Gray code G,
' G(i) i G(1)

0 OGn_1<O) n—1 1Gn_1(0>
1 OGn_l(l) n—2 1Gn_1(1)

e Required properties preserved by construc-

tion!
H(i) = G(i) = i xor &.

Wolfgang Schreiner

14

Distributed Memory Programming

Gray Code Computation

C functions.
e Gray-Code

int G(int i)
{

return(i ~ (i/2));
+

e Inverse Gray-Code

int G_inv(int 1)
{
int answer, mask;
answer = 1;
mask = answer/2;
while (mask > 0)
{
answer = answer ~ mask;
mask = mask / 2;

+

return(answer) ;

Wolfgang Schreiner

15

Distributed Memory Programming

Block-Oriented Algorithm

A_(All A12>B_(Bll BlZ)

Ay Ag Bo1 Bao
Ch C12>

O — _
(021 Ca2

(AnBi + A1aBy A1 Big 4+ A12Ba)
A91B11 + A9 By A9 Bio 4+ AgaBao

e Use block-oriented distribution introduced
for shared memory multiprocessors.

Block-matrix multiplication is analogous to scalar ma-
trix multiplication.

e Use staggering technique introduced for 2D
SIMD mesh.

Rotation along rows and columns.

e Perform the SIMD matrix multiplication al-
gorithm on whole submatrices.

Submatrices are multiplied and shifted.

Wolfgang Schreiner 16

Distributed Memory Programming

Analysis of Algorithm

n? matrix, D Processors.

e Row /Column-oriented

— Computation: n?/p * n/p = n’/p?.

— Communication: 2(\ + 5”2/1?)

— p iterations.
e Block-oriented (staggering ignored)
— Computation: n?/p * n/p = n’/p?.

— Communication: 4(\ + 5”2/19)
— \/]’9 — 1 iterations.

e Comparison
2p(A + Bn?/p) > 4(\/p — D)(A + Bn®/p)
2Ap 4 20n* > 4X(\/p — 1) +48(y/p —)n*/p
1.p>2(/p—1)
2.1>2(/p—1)/p

True for all p > 1.

Also including staggering, for larger p the
block-oriented algorithm performs better!

Wolfgang Schreiner 17

